Меню
Поиск



рефераты скачать Поиск новых фторидофосфатов лития и переходных металлов



2.2. Проведение синтезов

При нагревании фторида лития с дигидрофосфатом аммония возможно улетучивание фтороводорода. Поэтому проведение синтеза в одну стадию вряд ли возможно. Сначала нужно получить LiMPO4, и лишь после полного удаления воды можно добавлять фторид лития.

Таким образом, можно выделить две стадии.

(1)     2NH4H2PO4 + Li2CO3 + 2MO ® 2 LiMPO4 + 2NH3 + CO2 + 2H2O.

Здесь MO – это либо оксид (NiO, CoO), либо соединение, разлагающееся до оксида.

(2)     LiMPO4 + LiF ® Li2MPO4F


Навески веществ смешивали и растирали в яшмовой ступке до полной однородной массы, затем прессовали таблетки, выдерживали при температуре 150-170 °C 2 часа для удаления большей части летучих компонентов (если сразу нагреть до более высоких температур, то происходит оплавление и однородность таблетки нарушается). Затем температуру постепенно повышали, периодически перетирая смесь, до получения практически чистых LiMPO4. Обжиги проводили либо в муфельной печи, либо в инертной атмосфере в трубчатой печи.

Ввиду отсутствия инертных газов в баллонах, пришлось получать азот нагреванием водного раствора хлорида аммония и нитрита бария. Колба, в которой происходила основная реакция по получению азота (экзотермическая реакция, небольшое нагревание),  соединялась с двумя промывалками с сернокислым раствором бихромата калия для улавливания возможных примесей аммиака и оксида азота, далее шла накаливаемая трубка с пористыми медными гранулами для очистки от кислорода и оксидов азота, потом  с силикагелем для грубой осушки и две промывалки с концентрированной серной кислотой для более полного улавливания водяных паров. Эти промывалки соединялись с трубкой, в которой находились смеси веществ в спрессованном виде в никелевых лодочках. Вначале через установку пропускали трехкратный объем азота для удаления воздуха и лишь потом начинали нагревание. После завершения обжига образцы охлаждали в токе азота, дабы не допустить окисления воздухом.

Продукты проверяли рентгенофазовым анализом и переходили ко второй стадии экспериментов, для этого полученные таблетки перетирали с рассчитанной навеской фторида лития и, спрессовав, продолжали обжиг либо в муфельной печи, либо в инертной атмосфере в трубчатой печи по уже рассмотренной технологии. Чтобы обеспечить более полное связывание фосфата, фторид лития вводили в пятипроцентном избытке. Этот избыток составляет лишь 0,7 масс. % смеси и менее существенен, чем примесь не прореагировавшего фосфата.


2.3. Рентгенография

Рентгенофазовый анализ производился на дифрактометре ДРОН – 2.0 в медном  Кa  - излучении. Данное излучение не очень подходит для соединений, в которых присутствуют железо и особенно кобальт, так как оно сильно поглощается атомами этих элементов и возбуждает их собственное рентгеновское излучение. В результате дифракционные максимумы ослабляются, и резко возрастает фон. Поэтому снижается чувствительность фазового анализа, уменьшается число наблюдаемых отражений и ухудшается точность их измерения из-за сильных флуктуаций интенсивности. Чтобы преодолеть эти затруднения, следовало бы использовать рентгеновскую трубку с другим анодом, например, кобальтовым (но тогда бы возникли те же проблемы с соединениями марганца) или установить монохроматор на  дифрагированном пучке. Но у нас не было такой возможности, поэтому для уменьшения статистических ошибок съемку кобальтового соединения приходилось повторять по несколько раз.

При фазовом анализе применялась база порошковых дифракционных  данных PDF-2.


3. Результаты и их обсуждение

3.1. Фторидофосфат никеля-лития

Синтез проводился в две стадии, как описано выше. Если исходным веществом был ацетат никеля, то при его разложении происходило частичное восстановление никеля (образец чернел), поэтому требовался обжиг в окислительной атмосфере. Если же исходное вещество - оксид никеля, то и первый, и второй обжиги можно проводить и на воздухе, и в азоте, результаты  практически одинаковые. На первой стадии при температуре последнего обжига 750°С получен почти чистый желтый LiNiPO4 с небольшой примесью NiO, а после 680°С содержание примесей было несколько больше, и образец был серого цвета. Но в обоих случаях на второй стадии - при обжиге с LiF (750 °С, 2-4 часа) - получен практически чистый Li2NiPO4F серо-зеленого цвета. В имеющейся базе порошковых дифракционных данных нет его рентгенограммы, но она была рассчитана на основе структурных данных [11] с помощью программы Lazy Pulverix, и экспериментальные данные хорошо совпали с расчетными.

3.2 Фторидофосфат кобальта-лития


 В согласии с литературными данными [6], LiCoPO4 удалось получить на воздухе. На первой стадии смесь исходных соединений поместили в сушильный шкаф при температуре 170 °C, выдержали 2 часа, затем переместили в муфельную печь, и медленно нагрели до 680 °C,  выдержав 40 минут, после чего тщательно растерли и выдержали при 750°C 30 минут. Получен порошок фиолетового цвета, по данным рентгенофазового анализа соответствующий фосфату кобальта-лития.

Однако на второй стадии, после его реакции с LiF при 750°С, вместо ожидаемого Li2CoPO4F обнаружено большое количество Co3O4 в смеси с исходным LiCoPO4 и неизвестными фазами. Поскольку без фторида лития этого оксида кобальта не наблюдалось, можно предположить, что к его образованию привело сочетание сразу нескольких побочных явлений: гидролиз фторида водяным паром увеличил содержание Li2O, поэтому менее основный CoO был вытеснен из фосфата, чему способствовало его окисление до Co3O4. Поэтому присутствие  кислорода воздуха и водяных паров мешает при твердофазном синтезе фторидофосфата кобальта.

После этого весь эксперимент последовательно проведен в инертной атмосфере. Для чего на первой стадии снова приготовили смесь веществ, спрессовав, поместили в трубчатую печь выдержали в интервале температур от 120 до 300 °C около часа, затем стали повышать температуру на 50°C каждые 10-15 минут, доведя до 750 °C, выдержали 1,5 часа. Преимуществом был тот факт, что реакция проходила при постоянном токе азота, после охладили систему в азоте, извлекли таблетку и растерли ее, порошок фиолетового цвета. Образец, взятый на рентгенофазовый анализ, показал наличие фосфата кобальта-лития и незначительного количества примесей по сравнению с тем порошком, который был получен в воздухе. Затем добавили расчетное количество LiF и, спрессовав таблетку, поместили в трубчатую печь, нагрели в токе азота до 750 °C, выдержали 2 часа , затем охладили систему в присутствии азота, таблетку извлекли и растерли, полученный темно-фиолетовый порошок проверили с помощью рентгенофазового анализа.

На рентгенограмме отсутствовали пики исходных LiCoPO4, LiF, оксидов кобальта. По расположению и интенсивности пиков рентгенограмма этого продукта оказалась сходна с расчетной рентгенограммой Li2NiPO4F, что позволило полностью проиндицировать ее на основе аналогичной ромбической элементарной ячейки (табл. 4). Впрочем, попытка механического переноса индексов hkl с одной рентгенограммы на другую первоначально не привела к удовлетворительному результату. Лишь после нескольких проб и ошибок выяснилось, что замещение никеля кобальтом ведет к анизотропному изменению параметров (a уменьшается, b, c и объем возрастают, см. табл. 5), поэтому некоторые линии на рентгенограмме меняются местами.

Правильность индицирования подтверждается хорошим согласием вычисленных и измеренных значений углов (табл. 4). Найденный объем ячейки, несколько больший, чем у никелевого аналога (табл. 5), хорошо согласуется с соотношением размеров ионов никеля и кобальта (табл. 2). Таким образом, синтезировано новое соединение Li2CoPO4F, изоструктурное Li2NiPO4F.


Таблица 4

Результаты индицирования рентгенограммы нового соединения Li2CoPO4F в сравнении с рентгенограммой Li2NiPO4F, рассчитанной на основе его кристаллической структуры с помощью программы Lazy Pulverix. Параметры решетки уточнены с помощью программы Celref 3 и приведены в таблице 5.


hkl

Li2NiPO4F

Li2CoPO4F

I

2qвыч

Iэкс

2qэкс

2qвыч

D (2q)

002

86

16.34

60

16.33

16.32

0.01

200

100

16.93

85

17.03

16.98

0.05

211

40

23.58

50

23.50

23.51

- 0.01

013

32

28.48

25

28.40

28.35

0.05

311

14

30.42

20

30.44

30.42

0.02

022

45

32.93

40

32.59

32.59

0.00

004

36

33.03

40

32.97

32.98

- 0.01

400

47

34.25

100

34.31

34.36

- 0.05

222

45

37.25

50

36.98

36.98

0.00

410

7

37.20

10

37.25

37.23

0.02

402

5

38.17

20

38.25

38.26

- 0.01

123

16

38.92

10

38.62

38.62

0.00

214

11

40.10

25

40.00

40.01

- 0.01

224

16

47.56

30

47.29

47.31

- 0.02

422

32

48.24

20

48.08

48.08

0.00

424

15

56.99

25

56.82

56.83

- 0.01

026

28

58.93

10

58.65

58.65

0.00


Таблица 5

Сравнение параметров ромбических решеток Li2MPO4F (в скобках – стандартное отклонение последней значащей цифры)

M

a Å

b Å

c Å

V

Ni

10.473(3)

6.2887(8)

10.846(1)

714.3

Co

10.440(5)

6.368(9)

10.863(8)

722.3(8)

3.3. Соединения, содержащие марганец и железо

Попытки синтеза  Li2FePO4F проводили в инертной атмосфере, так как соединения железа (2+)  быстро окисляются на воздухе. По той же причине трудно подобрать устойчивую весовую форму исходного соединения железа (2+). В данной работе для приготовления промежуточного соединения LiFePO4 использовали FeC2O4*2H2O, желтый осадок которого был получен и проанализирован, как описано выше. В литературе имеются противоречивые сведения о продуктах разложения чистого оксалата железа. По одним данным, получается оксид железа (2+), по другим - пирофорный металл. Мы предполагали (как и подтвердилось впоследствии), что для окисления этого металла будет достаточно примеси кислорода в азоте. Если бы при первом опыте был обнаружен металл, то можно было бы в дальнейшем использовать сочетание FeC2O4*2H2O + Fe2O3 для получения заданной степени окисления железа.

Смесь оксалата железа, карбоната лития и дигидрофосфата аммония, спрессовав, поместили в трубчатую печь и при постоянном токе азота выдержали в интервале температур от 120 до 300 °C около часа, затем стали повышать температуру на 50°C каждые 10-15 минут, доведя до 750 °C, выдержали 1,5 часа , после чего охладили систему в азоте, извлекли таблетку и растерли ее. Получен порошок черного цвета, притягивающийся к магниту. Но по данным рентгенофазового анализа ферромагнитная фаза - это не металлическое железо, а магнетит Fe3O4. Вторую стадию, реакцию с LiF, проводили при 750 °C в течение 2 часов в токе азота. В результате таблетка сильно деформировалась (что указывает на появление небольшого количества жидкой фазы), а рентгенофазовый анализ показал смесь LiFePO4 + LiF. Таким образом, ожидаемое соединение Li2FePO4F не получилось.

Согласно литературным данным [6], LiMnPO4 может быть синтезирован на воздухе при 780°С. Поскольку соединения марганца (2+) окисляются почти так же легко, как соединения железа (2+), это казалось маловероятным и в данной работе не подтвердилось. После обжига на воздухе на рентгенограммах неизменно присутствовали яркие отражения Mn2O3. Поэтому синтез был проведен по той же схеме, что и в случае железа - через оксалат марганца (2+) в азоте. При температуре заключительного обжига 750°С в течение 1,5 часа получен практически чистый LiMnPO4 серого цвета. Но взаимодействия LiF с LiMnPO4 не обнаружено даже вблизи температуры плавления смеси.

Отсутствие в этих опытах соединений Li2MPO4F (M = Fe, Mn) нельзя объяснить ни окислением (поскольку найденные фазы соответствуют желаемой степени окисления железа и марганца), ни гидролизом фторида (фторид лития обнаружен), ни кинетическими затруднениями (температура была достаточно высокой, близкой к плавлению, и соединения никеля и кобальта в тех же условиях получались легко). Очевидно, соединения Li2MPO4F (M = Fe, Mn) в рассматриваемых условиях термодинамически менее стабильны, чем смеси  LiMPO4 + LiF. Вероятно, катионы железа и марганца чрезмерно крупные (см. табл. 2) для стабильности данного типа структуры).

Было бы  интересно проверить влияние давления на направление реакции  LiMPO4 + LiF = Li2MPO4F. Для этого по известным параметрам решетки рассчитаны формульные объемы реагентов и продуктов (табл. 6). Из нее видно, что реакция идет с небольшим увеличением объема, поэтому высокие давления будут, вероятно, смешать равновесие влево, то есть еще больше дестабилизировать фторидофосфаты.

Таблица 6

Сравнение объемов (в кубических ангстремах) в расчете на формульную единицу реагентов и продуктов

M

V/Z

Δ V

LiF

LiMPO4

Li2MPO4F

Ni

16,35 [22]

68,65-69,24 [6, 23, 24]

89,29 [11]

3,7-4,3

Co

16,35

70,80-71,03 [25, 26]

90,30

2,9-3,1



3.4. Опыт по окислению

Суть этого опыта сводится к попытке окисления полученного фторидофосфата кобальта-лития раствором брома в метаноле с целью извлечения части или всего лития с сохранением каркаса MPO4F.

Li2CoPO4F + 1/2Br2 ® LiCo+3PO4F + LiBr

Li2CoPO4F + Br2 ® Co+4PO4F + 2 LiBr

Метанол был выбран потому, что он, в отличие от неполярных жидкостей, растворяет не только бром, но и бромид лития, и в то же время, в отличие от воды, не образует с бромом кислот, которые могли бы реагировать с нашим фосфатом. Метанол предварительно осушали кипячением с оксидом кальция и перегоняли.

Бюкс с навеской фторидофосфата кобальта-лития поместили в бокс, туда же поместили силикагель для поглощения паров воды и брома, метанол и ампулу с бромом. Все операции по бромированию проводили в боксе (бром – яд, очень хорошо улетучивается), для этого осторожно вскрыли ампулу с бромом и вылили ее содержимое в заранее подготовленную колбу с метанолом, перемешали. В расчете 15 г брома на 100 мл раствора, что соответствует 0,94 моль/л.

После чего прилили приблизительно трехкратный избыток раствора брома в метаноле в бюкс с фторидофосфатом кобальта-лития и оставили на неделю в боксе для процесса окисления,  периодически встряхивая. Затем раствор декантировали, залили свежую порцию раствора и обработку повторили в течение еще олной недели. По истечении данного срока слили раствор и промыли осадок метанолом методом декантации.

Продукт высушили в вакуум-эксикаторе, отобрали пробы и проанализировали их на степень окисления кобальта.

Для этого к ним прилили по 20 мл 0,1 М раствора FeSO4 в 1 M H2SO4 и нагрели для растворения осадка. Параллельно проводили холостые опыты с 20 мл того же раствора, но без анализируемого вещества.

При титровании перманганатом обнаружилась полная сходимость холостых опытов и опытов, в которых вместе с восстановителем содержались исследуемые соединения. Таким образом, никакого окисления фторидофосфата лития-кобальта не обнаружено. По данным рентгенофазового анализа изменений тоже не наблюдается.

Напрашивается вывод, что данное соединение может окисляться более сильным окислителем и нуждается в более детальном рассмотрении, выходящем за рамки дипломной работы. Если у него потенциал относительно лития около 4 В, то бром, очевидно, недостаточно сильный окислитель для извлечения лития


4. Выводы и перспективы


В результате работы получено одно новое соединение состава Li2CoPO4F, показана его изоструктурность с никелевым аналогом. Установлено отсутствие таких соединений с железом и марганцем на месте никеля. Новое соединение может представить интерес как материал положительного электрода литий-ионного аккумулятора, но для этого нужно провести его электрохимические испытания, что не входило в задачи данной работы.


Список использованных источников


1.     Элементы питания. Прошлое, будущее и настоящее. http://www.fotolux.com.ua/article/anatomi_13.htm

2.     Tarascon J.-M., Armand M./ Issues and challenges facing rechargeable lithium batteries// Nature. 2001. V. 414. P. 359-367.

3.     Скундин А.М./ Меньше, чем маленький…// Химия и жизнь, 2003, № 7-8.

4.     Элементы питания. Прошлое, будущее и настоящее. http://www.fotolux.com.ua/article/anatomi_20.htm.

5.     Литий кобальтит. Информация о разработках компании «Балтийская мануфактура». http://www.soli.ru/new_study.htm.

6.     Krabbenhoft D., McCarthy G.// ICDD Grant-in-Aid. 1980. (Цит. по   PDF-2, № 32-552, 32-578, 33-804).

7.     Guohua Li, Hideto Azuma, Masayuki Tohda/ LiMnPO4 as the Cathode for Lithium Batteries// Electrochemical and Solid-State Letters, 2002, V. 5, Iss 6, pp. A135-A137 (Цит. по реферату из Интернет).

8.     Yang S., Song Y., Zavalij P. Y., Whittingham M. S.// Reactivity, stability and electrochemical behavior of lithium iron phosphates./ Electrochemistry Communications, 2002, 4, P. 239–244. (Цит. по реферату из Интернет).

9.     Amine K., Yasuda H., Yamachib M.// Olivine LiCoPO4 as 4.8 V Electrode Material for Lithium Batteries/ Electrochemical and Solid-State Letters. 2000. 3 (4). P. 178-179. (Цит. по реферату из Интернет)

10.  S. Yang, P.Y. Zavalij, M.S. Whittingham.// Electrochemistry Communications/ 2001. 3. P.505. (Цит. по реферату из Интернет)

11.  Dutreilh M., Chevalier C., El-Ghozzi M., Avignant D.// Synthesis and crystal structure of a new lithium nickel fluorophospate Li2(NiF(PO4)) with an ordered mixed anionic framework/ Journal of Solid State Chemistry. 1999. V. 142. P.1-5. (Цит. по ICSD, № 50588).

12.  Yakubovich O.V., Karimova J.V., Mel`nikov O.K./ The mixed anionic framework in the structure of Na2(MnF(PO4).// Acta Cryst. C. 1997. V. 53. P. 395-397. (Цит. по ICSD)

13.  Sean H. Swafford and Elizabeth M. Holt/ New synthetic approaches to monophosphate fluoride ceramics: synthesis and structural characterization of Na2Mg(PO4)F and Sr5(PO4)3F.// Solid State Sciences.  2002. V. 4.  P. 807-812.

14.  Расцветаева Р.К., Максимов Б.А., Тимофеева В.А.// Кристаллическая структура нового Na,Fe-фосфата Na5Fe(PO4)F2./ ДАН СССР. 1996. Т. 350. № 4. С. 499-502.

15.  Голубев А.М., Максимов Б.А., Клокова Н.Е, Мельников О.К., Тимофеева В.А., Сорокин Н.И., Симонов В.И.// Кристаллическая структура натрий-железо (III) – фторофосфата Na4,6FeP2O8,6F0,4./ Кристаллография. 1989. Т. 34. Вып. 6. С. 1574.

16.  Максимов Б.А., Клокова Н.Е, Радаев С.Ф., Симонов В.И.// Уточнение атомной структуры ионного проводника Na4+xFeP2O8+xF1-x./ Кристаллография. 1992. Т. 37. Вып. 5. С. 1143-1151.

17.  Максимов Б.А., Тамазян Р.А., Клокова Н.Е, Петржичек В., Попов А.Н., Симонов В.И.// Несоизмерная модуляция в структуре Na9{Fe2[PO4]4F2} при 623 К./ Кристаллография. 1992. Т. 37. Вып. 5. С. 1152-1163.

18.  Shannon R.D.// Acta Crystallogr. 1976. V. A32. № 5. Р. 751.

19.  Савостина В.М., Пешкова В.М.// Аналитическая химия никеля, М.: «Наука». 1966.

20.  Пятницкий И.В.// Аналитическая химия кобальта, М.: «Наука». 1965.

21. Лаврухина А.К., Юнина Л.В.// Аналитическая химия марганца, М.: «Наука». 1974.

22.  Van Velthuizen, J., Chao G.// Can. Mineral.1989. 27. P.125. (Цит. по   PDF-2, № 45-1460).

23.   Abrahams J., Easson K.S.// Structure of lithium nickel phosphate/ Acta Crystallographica. 1993. 49. P.925-926. . (Цит. по реферату)

24.  Warda S.A., Lee S-L.// Refinement of the crystal structure of lithium nickel phosphate, LiNiPO4./ Zeitschrift fuer Krystallographie – New Crystal Structures. ZKNSF 212. 1997. P. 319.  (Цит. по реферату)

25.  Kubel F.// Crystal Structure of lithium cobalt double orthophosphate, LiCoPO4./ Zeitschrift fuer Krystallographie (149, 1979 - ) ZEKRD 209. 1994. P. 755. (Цит. по реферату)

26.  Pujana A., Pizarro J.L., Goni A., Rojo T., Arriortua M.J.// Syntthesis and structural study of the Li1-3xFexCoPO4 (x = 0 – 0,10) solid solution related to the litiophylite-triphylite family./ Anales de Quimica International Edition. 1998. P. 383-387. (Цит. по реферату)


 



Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.