|
Приведенные данные наглядно демонстрируют ускорение динамики вовлечения газификации угля в мировую промышленность. Повышенный интерес к внутрицикловой газификации угля в развитых странах объясняется двумя причинами. Во-первых, ТЭС с внутрицикловой газификацией экологически менее опасна. Благодаря предварительной очистке газа сокращаются выбросы оксидов серы, азота и твердых частиц. Во-вторых, использование бинарного цикла позволяет существенно увеличить КПД электростанции и, следовательно, сократить удельный расход топлива. В табл.1.2 приведены характерные величины удельных выбросов и КПД для ТЭС с внутрицикловой газификацией и для ТЭС с традиционным сжиганием угля. Величины удельных выбросов и КПД для ТЭС с внутрицикловой газификацией и с традиционным сжиганием угля Таблица 1.2 | |||||||||||||||||||||||||||||||
Параметры |
Традиционная угольная ТЭС |
ТЭС с внутрицикловой газификацией |
||||||||||||||||||||||||||||||
Концентрация вредных веществ в дымовых газах |
130 |
10 |
||||||||||||||||||||||||||||||
Электрический КПД, % |
33-35 |
42-46 |
Необходимо отметить, что удельные капитальные затраты при использовании внутрицикловой газификации составляют примерно 1500 долл. США за 1кВт с перспективой снижения до 1000-1200 долл. США, в то время как для традиционной угольной ТЭС удельные капитальные затраты составляют примерно 800-900 долл. США за 1 кВт. Ясно, что ТЭС с внутрицикловой газификацией твердого топлива более привлекательна при наличии экологических ограничений в месте размещения и при использовании достаточно дорогого топлива, так как расход топлива на 1 кВт сокращается. Эти условия характерны для развитых стран. В настоящее время использование внутрицикловой газификации твердого топлива считается самым перспективным направлением в энергетике.
Для современной химической промышленности и энергетики требуются газогенераторы с единичной мощностью по углю 100 т/ч и более. К началу 1970-х годов в промышленном масштабе было реализовано три типа газогенераторов [4].
· Cлоевые газогенераторы. В разное время действовало более 800 газогенераторов, в том числе более 30 газогенераторов “Лурги” с единичной мощностью по углю до 45 т/ч. После 1977 г. введено в эксплуатацию еще 130 газогенераторов “Лурги”.
· Газогенераторы Винклера с кипящим слоем. Было сооружено более 40 аппаратов с единичной мощностью до 35 т/ч по углю.
Не случайно все самые мощные газогенераторы имели немецкое происхождение. Причина в том, что в Германии нет собственной нефти, но имеются большие запасы угля. В 1920-1940 гг. в Германии была реализована беспрецедентная по масштабам программа углепереработки с производством моторных топлив, металлургического топлива, газов различного назначения и широкого спектра продуктов углехимии, включая пищевые продукты. Во время второй мировой войны с использованием жидких продуктов пиролиза, прямого и непрямого ожижения угля производилось до 5,5 млн. т в год моторного топлива. Именно немецкие разработки того времени определили на многие десятилетия стратегию развития технологий углепереработки, в том числе газификации топлива.
Если проанализировать конструктивные особенности и принцип действия современных промышленных газогенераторов (к настоящему времени до промышленного масштаба доведено еще более десяти конструкций газогенераторов), можно выделить четыре основополагающих инженерных решения.
1. Создание Фрицем Винклером (концерн BASF) в 1926 г. газогенератора с кипящим слоем. Эта технология послужила основой для современных процессов HTW (Hoch-Temperatur Winkler) и KRW (Kellogg-Rust-Westinghouse) и др.
2. Разработка фирмой "Лурги" в 1932 г. слоевого газогенератора, работающего под давлением 3 МПа. Использование повышенного давления для интенсификации процесса газификации реализовано почти во всех современных промышленных газогенераторах.
3. Разработка Генрихом Копперсом и Фридрихом Тотцеком в 1944-45 гг. пылеугольного газогенератора с жидким шлакоудалением. Первый промышленный аппарат этого типа был построен в 1952 г. в Финляндии. Пылеугольный принцип газификации с жидким шлакоудалением реализован в промышленных аппаратах Destec, Shell, Prenflo, разработанных на основе газогенератора Копперса-Тотцека, в аппарате Texaco и др. Удаление шлака в жидком виде реализовано в слоевом газогенераторе BGL (British Gas– Lurgy), разработанном на основе газогенератора Лурги.
4. Разработка фирмой Texaco в 1950-е годы газификаторов для переработки тяжелых нефтяных остатков. Всего построено более 160 таких установок. В 1970-е годы была разработана модификация аппарата Texaco для газификации водо-угольной суспензии. Принцип подачи угля в аппарат в виде водо-угольной суспензии использован и в газогенераторе Destec.
Были попытки использовать и ряд других технических решений для создания новых газогенераторов: использование внешнего теплоносителя, в том числе тепла ядерного реактора; газификация в расплавах солей, железа, шлака; двух - трехступенчатая газификация; газификация в плазме; каталитическая газификация и др.
В 1930-1950 гг. были разработаны теоретические основы физико-химических процессов горения и газификации угля, выполнены фундаментальные исследования, не потерявшие актуальности до настоящего времени. В данном направлении неоспоримо лидерство советских ученых: А.С.Предводителева, Л.Н.Хитрина, Я.Б.Зельдовича, Н.В.Лаврова, Д.А.Франк-Каменецкого, Б.В.Канторовича и др.
Газификации могут быть подвергнуты любые виды твердых топлив от бурых углей до антрацитов.
Активность твердых топлив и скорость газификации в значительной степени зависит от минеральных составляющих, выступающих в роли катализаторов. Относительное каталитическое влияние микроэлементов углей при газификации может быть представлено рядом:
Mn>Ba>>B, Pb, Be>>Y, Co>Ga>Cr>Ni>V>Cu.
К основным параметрам, характеризующим отдельные процессы газификации твердых топлив, могут быть отнесены:
- тип газифицирующего агента;
- температура и давление процесса;
- способ образования минерального остатка и его удаление;
- способ подачи газифицирующего агента;
- способ подвода тепла в реакционную зону.
Все эти параметры взаимосвязаны между собой и во многом определяются конструктивными особенностями газогенераторов.
Обычно газифицирующими агентами служат воздух, кислород и водяной пар. При паро-воздушном дутье отпадает необходимость в установке воздухоразделения, что удешевляет процесс, но получается газ низкокалорийный, поскольку сильно разбавлен азотом воздуха.
Температура газификации в зависимости от выбранной технологии может колебаться в широких пределах 850-2000 0С. диапазон давлений газификации от 0.1 до 10.0 МПа и выше. Газификация под давлением предпочтительна в случаях получения газа, используемого затем его в синтезах, которые проводятся при высоких давлениях (снижаются затраты на сжатие синтез-газа).
В газогенераторах с жидким шлакоудалением процесс проводят при температурах выше температуры плавления золы (обычно выше 1300-1400 0С). ”Сухозольные“ газогенераторы работают при более низких температурах, и зола из него выводится в твердом виде [6].
По способу подачи газифицирующего агента и по состоянию топлива при газификации различают слоевые процессы, при которых слой кускового топлива продувается по противоточной схеме газифицирующими агентами, а также объёмные процессы, в которых большей частью по прямоточной схеме топливная пыль взаимодействует с соответствующем дутьем.
Процесс газификации угля первого поколения: Лурьги, Винклера и Копперс-Тотцека, достаточно хорошо изучены и применяются в промышленности в ряде стран для получения в основном синтез-газа и заменителя природного газа.
Большинство крупных газогенераторов на твердом топливе работают по прямому процессу с газификацией топлива в движущемся слое. При этом движение топлива и дутья происходит навстречу друг другу. По этой схеме подаваемое в газогенератор дутьё происходит через шлковую зону, где оно несколько подогревается, и далее поступает в зону горения топлива при недостатке кислорода. Кислород дутья вступает в реакции с углеродом образуя оксид и диоксид углерода одновременно.
Основными недостатками процесса Лурьги является сравнительно небольшая скорость разложения водяного пара дутья, необходимость использования водяного пара как охлаждающего теплоносителя, предотвращающего сплавления и спекания золы, а также содержания в газе высших углеводородов и фенолов [9].
Повышение температуры реализовано в процессе БГЛ с жидким шлакоудалением, разработанном фирмой “ British gas “ на основе процесса Лурьги. Этим способом можно перерабатывать малореакционные и коксующие угли широкого гранулометрического состава. Выделенные из газа смолы и пыль возвращают в газогенератор, причем количество возврата может доходить до 15% на уголь. Процесс проверен на установки мощностью по углю 350 т/сут. В Ухтфильде. Процесс считается перспективным для применения в США , где ведутся работы по его совершенствованию [10].
Процесс Винклера основан на использовании псевдоожиженного слоя топлива. Принцип газификации мелкозернистого топлива в кипящем слое заключается в том, что при определенной скорости дутья и крупности топлива, лежащей на решетки слой топлива приходит в движение.
Процесс Винклера обеспечивает высокую производительность, возможность переработки различных углей и управлением составом конечных продуктов. Однако в этом процессе велики потери непрореагированного угля до 20-30% (масс.), выносимого из реактора, что ведет к потере теплоты и снижению энергетической эффективности процесса. Псевдоожиженный слой отличается большой чувствительностью к изменению режима процесса, а низкое давление лимитируется производительность газогенераторов [5].
По методу Винклера в разных странах работают 16 заводов ( Испании, Японии, Германии, Кореи и другие). Газогенератор типа Винклера имеет диаметр 5,5 м; высоту 23 м и максимальная единичная мощность действующих газогенераторов этого типа в настоящее время составляет 33 тыс. м3 газа в час [6].
В США разработан процесс газификации угля в аппарате с последующей агломерацией золы- так называемый процесс-V, предназначенный для производства низкокалорийного газа, который может быть использован в качестве сырья для получения водорода, аммиака или метанола, а также как топлива. Газификацию проводят в присутствии кислорода и паров воды в псевдоожиженном слое при давлении 5,7-7 МПа и температуре 980-1100 0С. Угольная пыль отделяется в циклонах, причем из внешнего циклона пыль возвращается в газогенератор. Газ не содержит жидких продуктов, что облегчает его очистку [6].
Вследствие высокой температуры процесса для газификации могут быть использованы угли любого типа включая спекающиеся, а полученный газ беден метаном и не содержит конденсирующиеся углеводородов, что облегчает его последующую очистку. К недостаткам процесса можно отнести низкое давление, повышенный расход кислорода, необходимость тонкого размола топлива [5].
Первый промышленный газогенератор этого типа производительностью 4 тыс. м3 в час синтез газа, был создан в 1954 году. По методу Коппер-Тотцека в мире работают 16 заводов (Япония, Греция и другие). Газогенератор Коппер-Тотцека с двумя форсунками имеет диаметр 3-3,5 м; длину 7,5 м и объём 28 м3 в час [6].
Известны неудачные попытки осуществить прямоточную факельную газификацию в условиях сухого золоудаления. В настоящее время газификацию угольной пыли проводят с жидким шлакоудалением. Для этой цели получили распространение газогенераторы вертикального типа, близкие по конструктивному оформлению к котельным агрегатам с пылеугольным сжиганием (Бабкок-Вилькокс) и газогенераторы с горизонтальной камерой газификации (Копперс-Тотцек).
Большие работы по созданию газогенераторов для газификации пылевидных топлив под высоким давлением с жидким шлакоудолением проводит американская фирма “Тексако”, которая является первопроходцем в применении для газификации водо-угольных суспензий. В газогенератор подают водную суспензию угля с концентрацией до 70% (мас.), что упрощает решение многих технических вопросов и позволяет автоматизировать процесс [5]. В 1984 году японской фирмой “Убе Индастриз” пущен крупнейший в мире газогенератор Тексако мощностью по углю 1500 тонн в сутки, вырабатывающий газ для синтеза аммиака [7]. На заводе Aioi (Япония) в 1987 году была сооружена пилотная установка производительностью 6 т. в сутки угля для газификации водо-угольных су суспензии по процессу Тексако, как наиболее прогрессивному. По проектным данным процесс осуществляется под давлением 1,96-2,94 МПа при температуре 1400 0С с получением смеси газов из оксида углерода, диоксида углерода и водорода, до 1991 года проводились научно-исследовательские работы совместно с “Tokyo Electric Power Co” и было переработано 533 тонны угля. Степень конверсии углерода достигала 100%. В синтез-газе содержалось до 52,3% оксида углерода, 33,2% водорода, 12,7% диоксида углерода. На воздушном дутье при подогреве суспензии до 150 0С степень конверсии достигала 72% [8].
Недостатком этого способа подачи угля является значительный расход тепла на испарение воды в газогенераторе, но уголь не требует предварительной сушки и исключается подача пара в газогенератор . Процесс Тексако характеризуется также повышенным удельным расходом кислорода 400-450 м3 на 1000 м3 синтез-газа. Соотношение уголь : вода в суспензии колеблется в разных пределах от 70:30 до 45:55. Водо-угольные суспензии используются также для газификации под давлением 10 МПа в газогенераторе Би-2эс. Кроме того, при эксплуатации оборудования газогенераторных станций, на которых используются водо-угольные суспензии, выявлены трудности по предотвращению коррозии циркуляционных насосов и инжекционных клапанов. Однако эти недостатки не уменьшают значимости, так как процесс высокоэффективен [9].
Новости |
Мои настройки |
|
© 2009 Все права защищены.