Меню
Поиск



рефераты скачать Отраслевые особенности природопользования

Метаморфическими считают те из магматических или осадочных пород, которые под действием высоких температур и давления изменили свой первоначальный состав и строение. К ним относят кварциты, гнейсы, кристаллические (слюдяные) сланцы, мраморы и др. В метаморфических породах находят руды железа, меди, вольфрама, редких металлов и др.[14]

Естественное скопление полезного ископаемого в земной коре называют месторождением полезного ископаемого. Часто бывает, что в одном месторождении сосредоточено несколько полезных ископаемых - хромо-никелевые, медно-цинковые, нефтегазовые и др. Угольный бассейн - площадь сплошного или островного развития угленосных отложений, характеризую­щаяся общностью условий образования на протяжении одного геологического отрезка времени. Угольный бассейн обычно при­урочен к крупной тектонической структуре.

Угленосный район - часть угольного бассейна, отличающаяся едиными гео­логическими условиями залегания угольных пластов.

Геолого-промышленный район - часть угольного бассейна, характери­зующаяся не только едиными геологическими условиями, но и общностью экономических, географических и исторических осо­бенностей развития. Приведенные определения применимы с соответствующей поправкой к другим полезным ископаемым. Уголь в недрах залегает в виде пластов, руды - в виде жил, линз, гнезд, пластов, а горючие сланцы, соли, торф - в виде пластов и линз (рис. 1.1). Пласт - скопление в недрах полез­ного ископаемого, ограниченное двумя близкими к параллель­ным плоскостями и имеющее значительную площадь распро­странения по сравнению с мощностью (толщиной накопления). Группа пластов, залегающих совместно в порядке их гене­тического образования, чередующихся с вмещающими пустыми породами и объединяющихся по единому геологическому при­знаку (чаще всего - по возрасту), представляет собой свиту пластов. Вмещающие породы и свита угольных пластов вместе образуют угленосную толщу. Вмещающие породы, залегаю­щие непосредственно выше пласта, называют кровлей, ниже пласта - почвой. Пластообразное скопление пустой однородной породы или часть пласта называют слоем.

Если угольный пласт состоит из одного угля, он имеет про­стое строение. В большинстве случаев пласт разделен прослойками - тонкими слоями пустой породы - на уголь­ные пачки, и имеет сложное строение. Число пачек в угольных пластах колеблется от единицы до десятков и со­тен. Плоскости, по которым отдельные пласты или слои пород соприкасаются друг с другом, называют плоскостями напла­стования.

В процессе образования угольных пластов органические осадки откладывались горизонтальными или слабо наклонными слоями. Однако при разработке месторождений находят пласты и слои различного угла наклона к горизонтальной плоскости. Это объясняется тем, что в ходе диагенеза и метаморфизма, в недрах возникали тектонические движения, которые привели к нарушениям (дислокациям) первоначального зале­гания пород. Геологические нарушения разделяют на пликативные (складчатые без разрыва сплошности массива) и дизъюнктивные (с разрывом сплошности).

Рис. 1. Форма залегания полезных ископаемых в недрах:

а - пласт; б - линза; в - гнездо; г – жила



§ 3.1. Общая характеристика свойств и состояния массива


Свойство горной породы - присущее ей качество, которое ха­рактеризует ее структуру или реакцию на внешнее воздействие.[15] Свойство может выражаться численным показателем, т. е. свой­ство имеет меру. В поиске, разведке, добыче и обогащении по­лезных ископаемых наиболее широко используют плотностные, коллекторские, механические, электрические, электромагнитные и акустические свойства.

Плотностные свойства характеризуют вещества в каком-либо объеме. Их используют при учете добычи полезных иско­паемых, в расчетах транспортирования угля и горных пород, а также обогащения.

Знание механических свойств горных пород позволяет пра­вильно выбрать технологию и средства механизации процессов добычи и обогащения полезных ископаемых. От механических свойств горных пород зависит выбор способа крепления и уп­равления кровлей в очистном забое или проведения горной вы­работки.

Электрические свойства горных пород используют для раз­ведки полезных ископаемых. Для этого в разведочных скважи­нах помещают электроды и пропускают через них электрический ток. По его величине рассчитывают удельную электриче­скую проводимость горной породы и по ней определяют тип горной породы. Так получают разрез горных пород по скважине. По замерам в нескольких скважинах определяют структуру за­легания пластов и пород на данном месторождении. Электриче­ские свойства горных пород используют также при стимулиро­вании осушения водоносных слоев, оттаивании мерзлых пород на карьерах.

Электромагнитные свойства пород используют для установ­ления границ рудных тел, полостей скопления соляного ра­створа, границ зон, опасных по горным ударам.[16]

Акустические свойства горных пород используют для опре­деления зон, опасных по внезапным выбросам угля и газа, устойчивости целиков, границ между угольным пластом и вмещающими породами, трещиноватости и нарушенности мас­сива.

Термические (тепловые) свойства влияют на теплообмен по­род с шахтным воздухом, а, следовательно, на климатические условия в горных выработках. Они используются в термическом бурении скважин на карьерах, при подземной газификации угля.

При разработке полезных ископаемых те или иные свойства горных пород проявляются в сочетании друг с другом. Комплекс свойств и технология ведения горных работ обусловливают со­стояние массива горных пород. В таких случаях говорят о про­явлении технологических свойств массива.

Состояние массива горных пород характеризуется напряже­ниями, массами пород, воды и газов, содержащихся в единице объема горных пород, и температурой. Напряжение горной по­роды - сила, действующая на единицу площади какого-либо сечения породы. Если сила направлена перпендикулярно к рас­сматриваемой плоскости сечения, то напряжение называют нормальным. В случае действия силы в плоскости сечения напряжение считают касательным.

Напряжения в массиве возникают по различным причинам. Основная из них - вес вышележащих пород. Сила, вызываемая весом вышележащих пород, называется горным давлением. На­пряжения в массиве от действия веса вышележащих горных по­род на глубинах 800-1200 м достигают 20-30 МПа и более.[17] Такие значительные напряжения обязательно учитывают при выборе технологии ведения горных работ.

Напряжения в массиве горных пород формируются также в результате тектонических движений земной коры, землетря­сений, давления газа и т. д.

На современных глубинах разработки давление метана в угольных пластах редко превышает 5-7 МПа. Наиболее вы­сокие давления метана зарегистрированы на шахтах Донбасса (12 МПа).

Давление углекислого газа, содержащегося в угольных пла­стах шахт Подмосковного бассейна и Восточного Донбасса, меньше, чем давление метана. Измеренные давления углекис­лого газа в пластах не превышают 3,5 МПа.

С увеличением глубины залегания угольных пластов их тем­пература возрастает по закону, близкому к линейному. В обыч­ных условиях, где отсутствуют термические аномалии, темпера­тура горных пород, начиная с пояса постоянных температур, которые равны среднегодовым на поверхности, увеличивается примерно на 3 °С через каждые 100 м глубины. Поэтому темпе­ратура пород, например, на глубине 1000 м достигает 38-42 °С. Изменения температуры пород создают в них дополнительные напряжения.[18]

В процессе разработки состояние угольных пластов и вме­щающих пород меняется - перераспределяются как напряже­ния, так и массы пород, метана и воды. Изменяются свойства и температура массива вокруг горных выработок.


§ 3.2. Перемены в недрах


Подавляющее большинство разрабатываемых место­рождений находится вблизи земной поверхности, не более чем на 300-метровой глубине (в среднем).[19] Именно из этой толщи земной коры человечество долгое время из­влекало все необходимое минеральное сырье. Сегодня же потребности в нем резко возросли: понадобилось не толь­ко больше сырья - потребовались такие полезные иско­паемые, в которых раньше не было нужды. Это застав­ляет горняков уходить в недра, вовлекать в разработку более глубокие горизонты.

В России сейчас более сотни шахт добывают уголь из пластов, лежащих в 600 метрах от поверхности. А на шахтах Донецкого бассейна первый рабочий гори­зонт расположен на глубине более 1000 метров. Пример­но того же уровня достигли разработки на калийных руд­никах в Белоруссии. Рабочие отметки некоторых рудни­ков Кривого Рога - полтора километра. На столько же предстоит опуститься руднику «Таймырскому» Талнахско-Октябрьского месторождения.

В среднем же глубина горных работ в РФ достигла 600 метров.[20]

Интенсивное проникновение в недра началось в 50-х годах. Именно тогда горняки впервые почувствовали, что они перестают быть полноправными хозяевами недр, что в некоторых случаях они не в состоянии управлять под­земными ситуациями.

Особенно опасны горные удары в рудных массивах Руда - крепкий материал, долго противостоит горному духу и, когда он высвобождается, всю энергию передаем подземным сооружениям. Уголь более пластичен, он несколько гасит силу удара.

Общий вывод: с глубиной недра ведут себя иначе, чем вблизи земной поверхности. В многовековой горной практике произошел перелом; нельзя дальше полагаться только на опыт, необходимо точнее изучить подземный мир на глубинах более 300 метров.[21]

В наши дни ситуация меняется. На глубокие горизон­ты первыми часто идут ученые. Следом за ними уверенно направляются в новые забои рабочие бригады. Горная на­ука гарантирует им спокойную работу.

Не так давно инженер-горняк обходился небольшим набором формул для расчета подземных сооружений. Се­годня он привлекает для тех же целей теорию упругости, теорию пластичности, механику сплошных и дискретных сред. Это помогает ему уверенно осваивать глубокие гори­зонты, работать на пределе допустимых воздействий на недра.


§ 3.3. Геотехнология и природа



Проблема взаимоотношения традиционных методов добычи полезных ископаемых и окружающей природной среды становится с каждым годом все острее.[22] Она все­сторонне обсуждается, исследуется специалистами, ее широко освещает периодическая печать. Но даже опре­деленные успехи, достигнутые, скажем, в рекультивации отобранных под горные разработки земель, не могут сгладить последствий традиционной практики горного дела для природной среды. Больше того, растет и ущерб народному хозяйству. Терриконы и отвалы, возникаю­щие вблизи шахт и карьеров, отбирают ежегодно десят­ки тысяч гектаров пахотных земель. Ветер легко разру­шает эти искусственные холмы, уносит пыль и вредные вещества на окрестные поля, в результате снижается их урожайность. Подземные горные выработки шахт, ко­торые часто распространяются на десятки километров, затрудняют, а подчас и полностью исключают строи­тельство на поверхности Земли. Колоссальные воронки современных карьеров - это не только чисто внешние раны, обезображивающие землю. Они ведут иногда к серьезным изменениям гидрогеологических условий больших районов, например к понижению уровня под­земных вод.

Геотехнология имеет в этом смысле немало преиму­ществ. Если традиционные методы добычи полезных ископаемых иногда уподобляют хирургическому вмеша­тельству в сложный организм природы, то геотехнологи­ческие методы сравнивают с терапией в медицине. Геотехнология, уходя из района месторождения после его отработки, не оставляют практически никаких видимых нарушений поверхности земли, не разрушают плодород­ных слоев почвы.

С другой стороны, нет никаких оснований и идеали­зировать геотехнологические методы с точки зрения их взаимоотношения с окружающей средой. Как и терапия в медицине, геотехнология при неумелом, недостаточно продуманном применении может обернуться многими не­желательными последствиями. Над огромными подзем­ными пустотами, образованными, скажем, подземным растворением солей или выплавкой серы, возможны де­формации вышележащего горного массива и проседание поверхности земли. Инструменты геотехнологии тоже весьма агрессивны - кислоты, щелочи, микроорганизмы. Ими могут загрязняться и поверхностные и подземные воды. При геотехнологических методах подчас неизбеж­но выделение вредных газов, которые грозят загрязне­нием атмосферы.

Но все эти нежелательные последствия, как показы­вают исследования и первая практика, устранимы поч­ти полностью, либо их можно свести к практически без­опасному минимуму.

Геотехнология ни в коем случае не исключает про­блему охраны окружающей среды от тех или иных за­грязнений, но она переводит ее на другой уровень по сравнению с традиционной горной технологией, ставит вопросы тонкого контроля и регулирования качества среды: о характере и концентрации вредных выбросов, приемлемом уровне воздействия на окружающую среду в каждом конкретном случае, о способах достижения и сохранения этого расчетного уровня.

В настоящее время наукой и промышленностью на­коплен немалый опыт в решении вопросов регулирова­ния качества среды. Созданы и создаются весьма совершенные приборы контроля, позволяющие оперативно и с высокой точностью определять концентрации вредных веществ, появляющихся в результате промышленных выбросов в атмосфере, акваториях и почве. Разработа­ны вопросы экономической и технологической целесооб­разности разных вариантов управления качеством окру­жающей среды. Хотя в общей оценке мероприятий, на­правленных на изменение технологических процессов с целью уменьшения вредных выбросов, нет еще объек­тивных данных о цене предотвращенного ущерба. Труд­но в рублях и копейках измерить сохранение здоровья людей, их морального и эстетического состояния.

Некоторые пути решения проблемы охраны окружа­ющей среды при геотехнологических способах добычи полезных ископаемых можно рассмотреть на Примере подземной выплавки серы. Здесь накоплен уже много­летний опыт. В технологии подземной выплавки выде­ляют два рода выбросов.[23]

Это организованный выброс, который связан с откач­кой из водоотливных скважин отработанного теплоноси­теля и в ряде случаев с откачкой пластовых вод, кото­рые могут изначально находиться в залежи. Откачива­емые воды обязательно поступают в очистные сооруже­ния. Только пройдя установку очистки от сероводорода, пруды-накопители и особые резервуары, где воды раз­бавляют и контролируют содержание в них нормального количества солей и газов, вода сбрасывается в реки.

Неорганизованный водоотлив возникает при наруше­нии технологии процесса. Он также должен учитывать­ся в расчете мощности очистных сооружений.

Но очистка вод и последующий их сброс в реки се­годня уже не могут считаться достаточными для пред­отвращения последствий подземной выплавки. Для мощных предприятий стоимость таких мероприятий ста­новится слишком высокой. Как показывают исследова­ния и расчеты, лучший способ регулирования качества среды - это полностью замкнутый водооборот. Причем такой способ оказывается еще наиболее выгодным с эко­номической точки зрения. Сегодня уже разработана замкнутая схема для производства теплоносителя из пластовых вод на мощном Язовском месторождении серы. Откачку пластовых вод из водоотливных скважин будут вести в общий коллектор.

Геотехнологические способы, как и традиционные, ведут к образованию в недрах земли пустот. Но во мно­гих случаях геотехнологическое нарушение структуры горного массива практически не влечет за собой опас­ности проседания поверхности над отработанной зале­жью. Например, при выщелачивании урана и редких металлов руда практически не изменяет своей пористо­сти. Это отражает как раз одно из уникальных досто­инств геотехнологии - возможность селективного извле­чения элементов из руды, когда растворению подвер­жены лишь незначительные в общем объеме рудного тела минералы. Расчеты показывают, что растворение руд с содержанием полезного компонента 15-20 про­центов не вызывает разрушения структуры горного мас­сива, по меньшей мере сколько-нибудь заметного.[24] При большем объеме растворения уже возможно разрушение структуры руды и ее уплотнение. В этом случае возни­кает необходимость принимать особые меры по компен­сации падения горного давления в пласте. Это может быть достигнуто, например, оставлением в пласте цели­ков - своего рода несущих колонн, закачкой в пласт воды. В случае, когда под землей образуются большие камеры, решение проблемы может быть достигнуто наи­более выгодным способом - устройством подземных хранилищ природного газа или нефти.

Нежелательные последствия при геотехнологических методах добычи полезных ископаемых может также иметь нарушение баланса между подачей в недра рабо­чих агентов и откачкой продукционных растворов. На степень такого рода нарушения может сильно влиять строение и состав окружающих полезный пласт горных пород. Как мы уже упоминали, окружающие породы должны быть по возможности малопроницаемы для жидкостей и газов. Если же естественная проницаемость массива все-таки велика, нужно найти способ гермети­зации подземной камеры. Такие задачи возникают при подземном растворении солей, выщелачивании метал­лов, газификации угля. Достаточно надежным способом предотвращения утечки реагентов, согласно исследова­ниям и экспериментам, может быть более интенсивное откачивание флюидов.

В целом специалисты считают, что в подавляющем большинстве случаев нежелательные явления, вызван­ные применением геотехнологических способов добычи полезных ископаемых, могут быть устранены совсем либо опасность их для природного равновесия может быть сведена к минимуму. При этом геотехнология со­храняет все свои преимущества - с точки зрения охра­ны окружающей среды - перед традиционными спосо­бами добычи.


Заключение



Геотехнология привлекает все большее внимание ученых и практиков. Уже сегодня разработаны геотех­нологические методы для добычи 30 ценных элементов, Этими методами ведется промышленная добыча камен­ной и калийной соли, урана, меди и никеля, самород­ной серы и тяжелой нефти, бишофита, фосфоритов. Ме­тодами геотехнологии разрабатывают месторождения каменного и бурого угля, йодо-бромистых подземных вод и подземных вод, содержащих бор, литий, уран, месторождения термальных вод.[25] В стадии полупромыш­ленного освоения геотехнологическими методами нахо­дятся месторождения соды и глауберовой соли, марганца, цинка, свинца и золота, битума и озокерита, строи­тельного песка и гравия. Полупромышленно извлекают­ся Ценные элементы из шахтных, рудничных и нефте­промысловых стоков, а также предприняты первые по­лупромышленные попытки использования тепла сухих горных пород.

Техника, которая обеспечивает добычу полезных ис­копаемых этими методами, имеет ряд характерных осо­бенностей. С одной стороны, она чаще всего не пред­ставляет собой какой-либо абсолютной новинки. Сква­жины с обычным для нефте и газопромыслов оборудо­ванием и буровые станки, насосы, компрессоры, котлы, парогенераторы, химические аппараты для производства реактивов, их регенерации и очистки - все это знакомо по работе в других отраслях производства. Но физико-химические процессы геотехнологической добычи идут в основном под землей. Потому геотехнология рождает и совершенно новую, не имеющую никаких аналогов, свое­образную технику - подземные химические реакторы, газогенераторы, тепловые котлы. Наконец, развитие гео­технологической добычи требует значительного измене­ния обычной наземной техники, например создания спе­цифических погружных насосов для откачки рабочих растворов, более мощных генераторов токов высокой частоты для искусственного прогрева залежи.

Сегодня многие специалисты сходятся во мнении, что у геотехнологии большие исследовательские и производ­ственные проблемы, но и большое будущее. Уже в бли­жайшие пятилетки геотехнология может выступить на равноправных началах с традиционными способами гор­ного дела - подземной и открытой добычей полезных ископаемых. Дальше - учитывая ее экономические, социальные и экологические преимущества - как аль­тернатива шахтам и карьерам.[26]



Список литературы



1. Васючков Ю. Ф.Горное дело; Учеб. для техникумов.- М.: Недра, 2000

2. Друянов В. А. Недра - цех под землей. М.Знание, 1999

3. Ковальчук А. Б. Горное дело: Учеб. для техникумов. М.: Недра, 1991

4. Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999




[1] Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999 С 4


[2] Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999 С 5


[3] Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999 С 6


[4] Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999 С 7


[5] Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999 С 9


[6] Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999 С 8


[7] Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999 С 12


[8] Ковальчук А. Б. Горное дело: Учеб. для техникумов. М.: Недра, 1991 С 11


[9] Ковальчук А. Б. Горное дело: Учеб. для техникумов. М.: Недра, 1991 С 12


[10] Ковальчук А. Б. Горное дело: Учеб. для техникумов. М.: Недра, 1991 С 12


[11] Васючков Ю. Ф.Горное дело; Учеб. для техникумов.- М.: Недра, 2000 С 11


[12] Васючков Ю. Ф.Горное дело; Учеб. для техникумов.- М.: Недра, 2000 С 12


[13] Васючков Ю. Ф.Горное дело; Учеб. для техникумов.- М.: Недра, 2000 С 13


[14] Васючков Ю. Ф.Горное дело; Учеб. для техникумов.- М.: Недра, 2000 С 14


[15] Васючков Ю. Ф.Горное дело; Учеб. для техникумов.- М.: Недра, 2000 С 38

 

[16] Васючков Ю. Ф.Горное дело; Учеб. для техникумов.- М.: Недра, 2000 С 39


[17] Васючков Ю. Ф.Горное дело; Учеб. для техникумов.- М.: Недра, 2000 С 40


[18] Васючков Ю. Ф.Горное дело; Учеб. для техникумов.- М.: Недра, 2000 С 41


[19] Друянов В. А. Недра - цех под землей. М.Знание, 1999 С 71



[20] Друянов В. А. Недра - цех под землей. М.Знание, 1999 С 72


[21] Друянов В. А. Недра - цех под землей. М.Знание, 1999 С 74



[22] Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999 С 55


[23] Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999 С 57


[24] Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999 С 58


[25] Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999 С 59


[26] Спиридонов Л. Л. Геотехнология. М. Знание, Новое в жизни, науке, технике. Сер. «Техника», № 4, 1999 С 61



Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.