Меню
Поиск



рефераты скачать Отражательная печь для плавки медных концентратов на штейн

Необходимо отметить, что с уменьшением интервала времени между загрузками снижается средняя (во времени) температура поверхности откосов. Соответственно растут плотность результирующего теплового  потока на этой поверхности и скорость плавления шихты. Максимальный эффект достигается тогда, когда этот интервал сопоставим по величине с продолжительностью первого периода, т. е. практически при непрерывной загрузке. Поэтому при конструировании печи следует учитывать, что си­стемы непрерывной загрузки имеют несомненное преимущество.

Средняя по массе скорость плавления материала (кг/с) может быть определена по формуле

,                            (3)

где  – теплопотребление шихты на откосах, Дж/кг; k – коэф­фициент, учитывающий конвективную составляющую суммарного теплового потока на поверхности шихтовых откосов, k = 1,1ч – 1,15; Fo – поверхность откосов, м2.

Переработка материалов в шлаковой ванне. В ванну поступает расплавленный материал с откосов и, кроме того, обычно заливается конвертерный шлак, содержа­щий примерно 2–3 % меди и других ценных компонентов, кото­рые при плавке переходят в штейн. Поступающие материалы про­греваются в ванне до средней температуры содержащегося в ней расплава, что сопровождается завершением процессов формирования шлака, а также эндо - и экзотермическими реакциями, характер которых обусловлен технологией плавки. Расходуемое на эти процессы тепло распределяется следующим образом: нагрев продуктов, поступающих с откосов (Q1) 15 – 20 %; завершение процессов плавления и образования вновь поступившего шлака (Q2) 40 – 45 %; прогрев конвертерного шлака (Q3) и эндотермические реакции (восстановление магнетита и т. п.) (Q4) 35 – 40 % и потери тепла теплопроводностью через стены и под печи 1 %. Кроме того, в ванне происходят экзотермические процессы, связанные с усвоением кремнезема расплавом шлака (Q5). Суммарный эффект от протекания процессов, идущих с потреблением тепла, отнесенный к единице массы перерабатываемой шихты  носит название употребления шихт в ванне и обозначается .

Процессы тепло - и массопереноса в ванне отличаются крайней сложностью вследствие сочетания конвекции и теплопроводности. Задачу можно существенно упростить, если учесть, что температура капель штейна, распределенных по объему шлака, равна температуре окружающего их расплава. В этом случае можно предположить, что штейн фильтруется через относительно неподвижный шлак, в котором тепло передается теплопроводностью, и что капли штейна практически принимают температуру в любой точке ванны. С целью создания возможностей для математического описания крайне сложных тепло - и массообменных процессов, протекающих в шлаковой ванне, были приняты следующие необходимые допущения:

1. Завершение тепловой обработки материала, поступающего с откосов в ванну расплава отражательной печи, происходит в условиях, когда температурный режим ванны не изменяется во времени. Скорость осаждения капель штейна считается постоянной, равной среднемассовому удельному расходу штейна nGву, где Gву – скорость поступления материала в ванну, равная количеству шихты проплавляемой в единицу времени на откосах и отнесенная к единице поверхности ванны FB, кг/(м2-с); n – доля штейна в 1 кг шихты. Удельная теплоемкость штейна принимается равной сшт.

2. Градиенты температур по длине и ширине ванны (~1,0–1,5°С/м) незначительны по сравнению с градиентами температур по ее глубине (~300–400°С/м) и их значениями можно пренебречь, считая поле температур в ванне одномерным.

3. Процессы тепло - и массопереноса в ванне сопровождаются
эндо - и экзотермическими реакциями, которые могут рассматри­ваться как стоки и источники тепла, распределенные по глубине ванны. Суммарный эффект от их воздействия равен теплопотреблению шихты в ванне

,

где Qi (x) – интенсивность процессов, идущих с потреблением тепла, отнесенная к еди­нице массы проплавляемой шихты, Дж/кг. Для аппроксимации закона распределения этой величины по глубине ванны можно воспользоваться полиномом второй степени

,

где х – координата точек на оси, нормальной к поверхности ванны.

4. Содержание штейна в шлаковой ванне невелико и поэтому
предполагается, что занимаемый им объем пренебрежимо мал по сравнению с объемом ванны. Глубина ванны принимается равной δ, средняя температура шлака, а также температуры на верхней (х=0) и нижней (х=δ) границах шлаковой ванны определяются параметрами технологического процесса и соответственно равны Тср. ш., Т0, Тδ.

При составлении дифференциального уравнения переноса тепла в ванне отражательной печи (с учетом принятых допущений) ее можно рассматривать в виде плоской пластины (шлака) c ко­эффициентом теплопроводности, равным коэффициенту теплопроводности шлака λш. Плотность теплового потока внутри ванны в сечениях х и х + dх определится следующими уравнениями:

 и .

В условиях, когда температура по глубине ванны не меняется во времени, изменение теплового потока на участке dx происхо­дит вследствие охлаждения штейна и протекания эндо - и экзо термических процессов, интенсивность которых будет равна:

,

т. е  

или  ,                     (4)

где  и .

При описании условий на границах шлаковой ванны были использованы уравнения теплового баланса шлаковой и штейновых ванн, которые имеют вид:

;

,

где qпот – плотность теплового потока на подине печи (потери тепла теплопроводностью через под печи), Вт/м, Тср. шт – средняя температуры штейна, °С.

Общее решение уравнения  (4) имеет вид:

           (5)

При анализе внутренней задачи удобнее использовать частные решения  уравнения  (4),  позволяющие вычислить среднюю температуру шлака и штейна Тср.ш и температуру на границе раздела шлака и штейна Тδ, влияние которых на параметры технологического процесса достаточно хорошо изучены.

Средняя температура шлака, вычисленная при интегрировании уравнения (5), определится по формуле:

     (6)

После нахождения постоянных интегрирования С1, С2, С3, С4 из граничных условий и почленного суммирования выражений (5) и (6) была получена формула для расчета температуры на границе раздела шлака и штейна:

,    (7)

где к1 – коэффициент, величина которого зависит от характера распределения стоков и источников тепла в ванне. В зависимости от вида функции Qt (x) величина ki изменяется в пределах от нуля до единицы.

В процессе эксплуатации печи параметры температурного режима ванны оказывают существенное влияние на основные технологические показатели плавки. Например, величина средней температуры шлаковой ванны имеет непосредственное влияние на скорость разделения продуктов плавки. Чем она выше, тем меньше вязкость расплавленного шлака и выше скорость осаждения штейна. Однако величина средней температуры шлака ограничена значениями температур на верхней и нижней границах шлаковой ванны. Повышение температуры на границе раздела шлака и штейна способствует интенсификации процессов диффузии штейна (и вместе с ним меди и других ценных компонентов) в шлак и уве­личению растворимости штейна в шлаковом расплаве. Снижение этой температуры до значений, при которых начинает выделяться твердая фаза, ведет к образованию настылей на подине печи. Поверхность ванны находится в непосредственном контакте с печными газами, т. е. с окислительной атмосферой. В этих условиях увеличение температуры шлака влечет за собой рост химических потерь металла.

Таким образом,  параметры  температурного режима ванн зависят от состава перерабатываемой шихты, индивидуальны для каждой печи и определяются опытным путем в ходе технологических экспериментов. Любое отклонение от заданных параметров приводит к повышению содержания металла в шлаке, что из-за большого выхода шлака ведет к существенным потерям металла. Вместе с тем повышение потерь металла со шлаками при прочих равных условиях свидетельствует о нарушении температурного и теплового режимов работы отражательной печи.

Взаимосвязь между температурным и тепловым режимами ванны может быть получена из уравнения (7), для чего это уравнение необходимо представить в виде:

 (8)

или  (8')

Физический смысл полученных уравнений заключается в сле­дующем. Первое слагаемое в левой части уравнения (8) – это плотность теплового потока, или удельная тепловая мощность, которая требуется для полной тепловой обработки материалов, поступающих на единицу поверхности ванны. Второе и третье слагаемые представляют собой плотность суммарного теплового потока теплопроводности и конвекции, который усваивается этими материалами внутри ванны. Необходимо отметить, что интенсивность переноса тепла конвекцией в ванне шлака опреде­ляется количеством и степенью перегрева получаемого штейна относительно средней температуры штейновой ванны и в условиях отражательной плавки при неизменных параметрах технологиче­ского процесса является постоянной величиной.

Количество тепла, подводимого к продуктам плавки за счет теплопроводности, в основном определяется характером распределения стоков и источников тепла (интенсивности процессов по­требления тепла) по глубине ванны. Чем ближе они расположены к поверхности ванны, тем больше тепла подводится к ним за счет теплопроводности и соответственно тем меньше величина коэффициента кi. Расчетным путем значения коэффициента кi могут быть получены только для наиболее простых функций распределения Qi (x). Например, при линейном и параболическим законах распределения Qi (x), когда максимум потребления тепла находиться на поверхности ванны, а на ее нижней границе потребление тепла равно нулю, величина кi будет соответственно равна 0,33 и 0,25. Если максимум и минимум теплопотребления поменять местами, то значения коэффициента ki  будут соответственно равны 0,67 и 0,75.

Правая часть уравнения (8) представляет собой плотность суммарного  теплового потока теплопроводности и кoнвекции, который усваивается поступившим в ванну материалом на границе раздела шлака и штейна.

Уравнение (8') определяет оптимальную с позиций технологии скорость поступления материалов в ванну, т.е. скорость при которой температурное поле ванны соответствует заданному технологическому режиму плавки. Ее величина  будет равна частному от деления удельной тепловой мощности, подводив к нижней границе шлаковой ванны, на то количество тепла, которое необходимо для завершения процесса тепловой обработки поступающих в ванну материалов в расчете на единицу массы проплавляемой шихты.

Теоретически могут существовать такие шихтовые материалы, тепловая обработка которых полностью завершается внутри ванны шлакового расплава. В этом случае скорость поступления мате­риала в ванну определяется условиями внешней задачи, так как любое количество тепла, подводимое к ее поверхности, усваи­вается продуктами плавки. На границе раздела шлака и штейна отсутствуют процессы, протекающие с потреблением тепла, и формула (8) теряет свой смысл, так как ее числитель и знаменатель тождественно равны нулю. В реальной практике медепла­вильных заводов сырье такого типа обычно не встречается. Подтверждением этого может служить известное правило, согласно которому рост удельной производительности печи всегда сопро­вождается увеличением потерь металла с отвальными шлаками. Объясняется это следующими причинами. Удельная производи­тельность отражательной печи, рассчитываемая по количеству проплавляемой шихты, фактически определяется скоростью про­цессов плавления материала на откосах, которая прямо пропор­циональна плотности теплового потока на их поверхности и может достигать 15–20 т/м2 в сутки в расчете на единицу площади пода печи. Скорость последующей тепловой обработки шихты в ванне, от величины которой зависит содержание металла в шлаке, лимитируется условиями внутренней задачи, т. е. интенсивностью процессов тепло - и массопереноса в шлаковом расплаве, и со­ставляет, как показывает практика, примерно 2–5 т/м2 в сутки при плавке сырой (подсушенной) шихты.      

За счет интенсификации внешнего теплообмена при обогащении дутья кислородом, установки дополнительных сводовых горелок, и т. п. может быть увеличена величина результирующего теплового потока на поверхность зоны технологического процесса. На откосах соответственно возрастает скорость плавления шихты и вместе с ней удельная производительность печи. Скорость тепловой обработки продуктов плавки в ванне не зависит от условий внешней задачи и поэтому увеличение плотности результирующего теплового потока на ее поверхности и количества, поступающих в нее материалов приводит к перестройке температурного поля шлаковой ванны, т. е. к нарушению температурного режима плавки и, как следствие, способствует росту потерь металла со шлаком.

Наиболее отчетливо это проявляется при резком (скачкообразном) повышении скорости поступления материала в ванну, например при локальном «обрушении» откосов. При сползании относительно большой массы непроплавленной шихты в ванну уменьшается температура верхнего слоя шлакового расплава, его вязкость растет, что в сочетании с обильным выделении технологических газов приводит к образованию на поверхности ванны в том месте, где произошло «обрушение», пористого слоя («пены»), коэффициент теплопроводности которого за порядок ниже, чем у остального расплава. В результате этом участке согласно формуле (8'), резко снижается скорость тепловой обработки материала, в то время как с откосов расплавленная шихта продолжает поступать с прежней интенсивностью. Поэтому снижение температуры и образование пористого слоя продолжается и вскоре этот слой «растекается» по всей поверхности ванны. В итоге, как показывает практика работы отражательных печей, температурный режим ванны становится неуправляемым и технологический процесс прекращается, так как металл прак­тически полностью переходит в шлак.

В тех случаях, когда при прочих равных условиях скорость поступления материала в ванну снижается за счет уменьшения поверхности откосов или каких-либо других причин и становится меньше оптимальной, согласно формуле (7) происходит умень­шение перепада температур по глубине шлаковой ванны. Это при­водит к интенсификации процессов диффузии штейна в шлак и увеличению его растворимости в шлаковом расплаве, т. е. росту потерь металла со шлаком.

Таким образом удельная производительность печи определяется скоростью процессов тепло - и массопереноса в ванне и зависит в основном от характеристики сырья (Qвш, λш, сшт, п, ki, Q0ш) и температурного режима плавки (Т0, Тср.ш, Тср.шт., Тδ).

Непосредственное экспериментальное определение скорости
тепловой обработки материала в ванне из-за сложности протекающих в ней процессов пока не представляется возможным. Это создает известные трудности при адаптации расчетной модели и подборе так называемых настроечных коэффициентов, использование которых в формулах (8) и (8') позволило заменить их для расчета конкретных параметров отражательных печей. Анализ этих уравнений может быть использован только для интерпретации существующих инженерных решений и обоснования выбора направления дальнейшего совершенствования работы агрегата. Необходимо также учитывать, что для большинства современных отражательных печей характерны максимальная для каждого агрегата интенсивность внешнего теплообмена и, как следствие, повышенная удельная производительность. В этих условиях повышение скорости тепловой обработки материала в ванне способствует сокращению потерь металла со шлаком и создает предпосылки для дальнейшего повышения производительности печи.

Проведенный анализ позволяет получить необходимые расчетные выражения и дать энергетическую интерпретацию известных технологических особенностей отражательной плавки и конструктивных решений отдельных элементов печи:

1. Для большинства медеплавильных заводов отражательная печь является единственным агрегатом, в котором могут перерабатываться конвертерные шлаки. В этих условиях довольно часто конвертерный шлак загружается в печь в твердом состоянии на поверхность откосов вместе с шихтой. Такой способ загрузки ведет к дополнительным затратам энергии, так как для повтор­ного расплавления шлака требуется значительное количество тепла. Тем не менее, он получил широкое распространение, так
как загрузка твердого конвертерного шлака на откосы способствует улучшению температурного режима плавки. На поверх­ности откосов присутствие в шихте твердого конвертерного шлака приводит к снижению температуры плавления образующегося шлака за счет снижения степени его кислотности. Следствием этого – является увеличение плотности результирующего теплового потока на поверхности откосов и соответственно коэффициента использования топлива в отражательной печи. Далее конвертер­ный шлак вместе с остальными продуктами плавки стекает на поверхность ванны, вблизи которой более интенсивно идут процессы «потребления тепла» подводимого за счет теплопроводности (уменьшается значение коэффициента ki). В этом случае, как показывает анализ уравнения  (8'), увеличивается скорость тепловой обработки продуктов плавки и уменьшаются потери металла с отвальными шлаками.

2. Из формулы (8') следует, что скорость тепловой обра­ботки материала в ванне тем выше, чем меньше потери тепла через кладку на уровне ванны. Поэтому при строительстве отра­жательных печей всегда применяют подины с повышенной тепло­изоляцией, а толщина стен на уровне ванны в 3–3,5 раза больше, чем над ванной.

3. Глубина шлаковой ванны при заданном температурном режиме может быть определена из уравнения (7) и рассчитывается по формуле

Из полученной зависимости следует, что глубина шлаковой ванны не может быть установлена произвольно, так как она зависит от свойств перерабатываемой шихты и состава продуктов плавки. Ее величина тем больше, чем меньше теплопотребление шихты в ванне. В современных отражательных печах глубина шлаковой ванны колеблется в пределах 0,6-0 8 м.

4. Связь между параметрами теплового и температурного режимов ванны шлакового расплава, расположенного между шихтовыми откосами, может быть установлена с помощью урав­нения теплового баланса, которое имеет вид

, (9)

где Fв, – поверхность ванны, м2; q'пот – плотность теплового потока теплопроводностью (потери тепла) через ограждение печи на уровне ванны, отнесенная к единице ее поверхности; GB – средняя по массе скорость переработки материала в ванне, кг/с.

При соответствии параметров теплового режима ванны и от­косов скорости тепловой обработки шихтовых материалов на этих участках зоны технологического процесса должны быть равны между собой, т. е. G° = Gв. Для выполнения этого требования необходимо, чтобы на всем протяжении зоны плавления шихты плотности результирующих тепловых потоков для поверхностей откосов и ванны оставались неизменными, т. е. чтобы средняя температура продуктов сгорания топлива была одинакова на расстоянии примерно 20–25 м от передней торцевой стенки печи. При традиционном торцевом отоплении печи выполнить это усло­вие довольно трудно и поэтому в последнее время наметилась тенденция к применению сводового отопления.

Зона отстаивания продуктов плавки. Этот участок ванны расположен в хвостовой части печи и в нем происходит завершение процессов разделения продуктов плавки. Средняя температура шлака в нем на 70-100 °С ниже, чем в зоне плавления, что способствует повышению извлечения меди в штейн за счет снижения степени растворимости штейна в шлаке. При охлаждении шлака штейн выделяется из него в виде мельчайших капель, для отстаивания которых  требуется продолжительное время. Так как время пребывания шлака в отстойной зоне прямо пропорционально количеству содержащегося в ней материала, под нее отводится обычно около одной третьей части рабочего пространства печи.

Список использованных источников


1 Кривандин В.А. Металлургическая теплотехника – 2 том / В.А. Кривандин; профессор, доктор техн. наук. – Москва: Металлургия, 1986 г. – 590 с.


Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.