Меню
Поиск



рефераты скачать Основы термодинамики

Если предположить, что для конденсированных систем ∆H и V не зависят ни от давления, ни от температуры, то уравнение Клапейрона-Клаузиуса легко интегрируется .

Интересным является рассмотрение равновесия С (графит) →С (алмаз). Использование справочных данных для энтальпий образования и энтропий графита и алмаза дает для этого превращения , откуда видно, что при любых температурах . Но поскольку , то с увеличением давления rG должна уменьшаться и при данной температуре графит и алмаз находятся в равновесии, тогда когда rG = 0. Предположив, что V не зависит от давления, получим после интегрирования.

откуда .

Подставив численные значения rG0  и V получим Р (атм) = 9448 + 17,42 Т

При        300 К              Р=14670 атм.

               1000 К           Р=26870 атм.

               1500 К           Р=35580 атм., т.е. равновесные давления имеют порядок десятков тысяч атм.

Далее    , и мы видим, что при высоком давлении поменялся даже знак теплового эффекта. Действительно, возьмем уравнение Гиббса-Гельмгольца:

 и возьмем производную по давлению:

.

После интегрирования и ряда упрощений имеем:

.

6.5.        Интегрирование уравнения Клапейрона-Клаузиуса для процесса парообразования.

Переход жидкости в пар называют испарением, обратный процесс конденсацией. Испарение твердых тел называют возгонкой или сублимацией, обратный – кристаллизацией. Пар, который находится в равновесии с конденсированной фазой, называется насыщенным паром.

Поскольку теплота парообразования положительна, а мольный объем пара больше мольного объема конденсированной фазы, это значит, что производная в уравнении Клапейрона-Клаузиуса  т.е. с ростом температуры давление насыщенного пара увеличивается.

При температурах, далеких от критических, мольный объем пара много больше мольного объема конденсированной фазы, поэтому последним можно пренебречь, а если в этой области температур насыщенный пар подчиняется уравнению состояния идеального газа, то: , и уравнение Клапейрона-Клаузиуса можно представить в виде: .

В нешироком интервале температур теплоту испарения можно считать постоянной и взятие определенного интеграла дает: .

Таким образом, если известна v H, то, зная давление насыщенного пара вещества при одной температуре, можно рассчитать давление насыщенного пара при другой температуре. С другой стороны, определив давление насыщенного пара при двух (по крайней мере) температурах, можно рассчитать теплоту испарения.

Взятие неопределенного интеграла дает (при v H = const) или , где А и В – константы, характерные для данного вещества. Это уравнение, линейное в координатах ln p – 1/T, дает прямую линию в значительном интервале температур. Более точным является уравнение Антуана: , где А, В, С – константы.

Практически полезным может оказаться правило Трутона: энтропия испарения вещества в нормальной точке кипения (при 1 атм.) равна приблизительно 90 Дж/моль*К. Тогда в уравнение Клапейрона-Клаузиуса входит только одна константа Тнтк – температура нормальной точки кипения:

.

По этому уравнению удобно рассчитывать температуру перегонки органических соединений под пониженным давлением. Однако следует отметить, что правило Трутона соблюдается только для «нормальных» жидкостей, т.е. таких молекулы которых не ассоциированы в жидкой фазе (как у воды за счет водородных связей), а также, если пары не состоят из полимерных или диссоциированных молекул.

Для уксусной кислоты прямые определения теплоты испарения в калориметре при температуре кипения СН3СООН равной 391К дает величину 406 Дж/г. С другой стороны при 363 К давление пара 293 торр, при 391К и 760 торр. Заменив производную в уравнении Клапейрона-Клаузиуса отношением конечных приращений имеем:

.

Мольная масса СН3СООН равна 60, тогда из калориметрических данных:

.

Расхождение между этими двумя значениями связано с тем, что для получения одного моля пара необходимо испарить больше, чем 60 г СН3СООН, следовательно, мольная масса пара СН3СООН равна:

, отсюда легко сообразить, что пары уксусной кислоты в этом температурном интервале димеризованы примерно на 2/3.

Насыщенный пар обладает еще рядом интересных свойств. Рассмотрим некоторые из них.

Пусть в гетерогенной системе при температуре Т находится 1 моль вещества, причем в равновесии находятся m молей пара и 1-m молей жидкой фазы. Пусть теплоемкость пара Сп, жидкости Сж, изменяем температуру от Т до T+dT, при этом испаряется масса жидкости dm, тогда затраты тепла dQ можно представить в виде соотношения:

.

Разделим правую и левую части на Т, имеем:

.

Следовательно, справедливо: ,

после дифференцирования имеем   .

По уравнению Кирхгоффа          и          ,

т.е. теплоемкость насыщенного пара не равна изобарной теплоемкости того же газообразного вещества.

Следует также иметь в виду, что введение постороннего (инертного) газа изменяет давление насыщенного пара при неизменной температуре, даже если газ не растворяется в жидкости. Это происходит вследствие влияния общего давления на свойства конденсированной фазы (возрастает ее мольная энергия Гиббса). Действительно, при T=const:

, где Рг – давление постороннего газа, Рж давление насыщенного пара, Vж и Vп - мольные объемы жидкости и пара. Поскольку по условию равновесия  dGж =dGп, то: .

Взятие интеграла от Рг = 0 до Рг приводит к уравнению:

Поскольку дробь Vж/Vn невелика (для воды при 373 К она равна 5,9∙10-4), то влияние постороннего газа сказывается только при высоких давлениях.

Например, для воды под давлением водорода при 373 К


25

200

600

1000

Эксп.

1,018

1,19

1,66

2,35

Расч.

1,015

1,12

1,35

1,802

Глава 7. Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал.

7.1.        Определения.

Раствором называется гомогенная, молекулярно-дисперсная система, состав которой можно изменять непрерывно в некотором конечном или бесконечном интервале.

По агрегатному состоянию растворы разделяются на твердые, жидкие и газообразные. Если растворитель и растворенное вещество имеют разные агрегатные состояния, то растворителем рассматривают обычно то вещество, агрегатное состояние которого совпадает с агрегатным состоянием раствора. Если же компоненты раствора и раствор имеют одинаковое агрегатное состояние, то за растворитель считают то вещество, которого больше, хотя для термодинамики это безразлично.

Состав раствора измеряется его концентрацией. Существуют следующие основные определения концентрации:

мольная доля (х) – число молей вещества в 1 моле раствора;

моляльность (m) – число молей растворенного вещества в 1000 г растворителя;

молярность (с) – число молей растворенного вещества в 1 л раствора;

массовое содержание (р) – число грамм растворенного вещества в 100 г раствора.

В основном мы будем пользоваться мольной долей. Очевидно, что

, а .

Если М0 и М мольные массы растворителя и растворенного вещества, а d – плотность раствора, г/см3, то переход от одной концентрации к другой можно представить следующими формулами (раствор, естественно, бинарный):

7.2.        Характеристические функции многокомпонентных систем.

Первый и второй законы термодинамики, из которых следуют фундаментальные уравнения, были получены для закрытых систем, т.е. систем, процессы в которых не приводят к изменению количества компонентов. Реально же чаще встречаются системы, в которых при различных процессах изменяются количества компонентов. Это может происходить, скажем, при фазовых превращениях или вследствие протекания химической реакции. При этом может изменяться состав, как отдельных частей, так и системы в целом.

Поэтому внутренняя энергия (и другие функции состояния) открытых систем будут изменяться не только за счет сообщения системе теплоты и произведенной системой работы, но и за счет изменения состава системы. Следовательно для открытых систем характеристические функции будут функциями не только их двух естественных переменных, но и функциями числа молей всех веществ , составляющих систему:

   U = U ( S, v, n1……………….nk ),

   H = H ( S, p, n1 ………….. nk ),

   F = F ( T, v, n1…………… nk ),

   G = G ( T, p, n1……………nk ).

Полный дифференциал внутренней энергии открытой системы можем записать как:           .

Индекс nji означает, что число молей других веществ, кроме данного, не изменяется.

Но если открытая система изменяет свое состояние при постоянном составе (все ni =const), то она ничем не отличается от закрытой системы, поэтому:

 и .

Гиббс назвал частную производную  химическим потенциалом i – компонента.

Аналогично: .

Поскольку HU + pV, FUTS, GUTS + pv, то dH = dU + pdV + Vdp, dF = dUTdSSdT, dG = dUTdSSdT + Vdp + pdV.

и подставив сюда

получаем:       

Сравнив выражение для полных дифференциалов характеристических функций, получаем: ,

т.е. химический потенциал компонента равен приращению характеристической функции системы при добавлении одного моля данного компонента при условии, что естественные переменные и состав системы остаются постоянными, т.е. система достаточно велика.

7.3.        Однородные функции. Уравнение Гиббса-Дюгема.

Функция многих переменных, например F(x,y,z), называется однородной функцией порядка k, если она обладает следующим свойством:

F (tx, ty, tz) = tk  F (x, y, z),

(например, F = x3 +x2y + y2x + z3 является однородной функцией 3-его порядка). Однородные функции обладают следующим свойством (теорема Эйлера): .

Доказательство теоремы Эйлера следующее:

Если f = f (x1, x2,…xn ), а каждое xi = φ(t), то .

Пусть F (x, y, z ) - однородная функция порядка k, положим x = , y=, z = , тогда .

Продифференцируем по t: .

Положим t = 1,тогда α = x, β = y, γ = z и , что и требовалось доказать.

Если температура и давление постоянны, то энергия Гиббса является функцией только числа молей компонентов: G = G (n1, n2, …nk ) и легко сообразить, что она является однородной функцией первого порядка относительно числа молей компонентов и по теореме Эйлера (k = 1):

.

После дифференцирования имеем: .

Но , а при p, T =const     .

Следовательно, .

Это уравнение называется уравнением Гиббса-Дюгема и широко применяется в термодинамике растворов поскольку дает возможность рассчитать dμi i –ого компонента, если известны изменения химических потенциалов всех остальных компанентов в изобарно-изотермическом процессе. Для бинарного раствора .

Разделив на сумму     п1 +п2, получим: .

7.4.        Условия равновесия в многокомпонентных гетерогенных системах.

Пусть р, Т = Const, тогда      . Если в системе имеются фазы (') и (''), то при переходе dni  молей iого компонента из фазы (') в фазу ('') изменение энергии Гиббса системы dG будет складываться из изменении энергий Гиббса обеих фаз dG ' и dG '': .

Если система закрытая, то    , а если она к тому же и равновесна, то dG = 0 и, следовательно, , т.е. химические потенциалы данного компонента во всех фазах системы, находящейся в равновесии, равны между собой.

Самопроизвольный неравновесный процесс может идти только в сторону уменьшения энергии Гиббса системы dG < 0 (p, T = const).

Предположим, что , т.е. фаза (') теряет iый компонент, но , значит .

Если же , тогда . Таким образом, компонент самопроизвольно переходит из фазы, в которой его химический потенциал больше, в фазу, в которой его химический потенциал меньше.

Эти условия равновесия и самопроизвольности процессов переноса вещества в многокомпонентных системах являются обобщением таковых для однокомпонентных систем (см. гл. 6). Кроме того, легко заметить, что химический потенциал чистого вещества равен его мольной энергии Гиббса.

Глава 8. Термодинамика смесей идеальных газов.

8.1.        Характеристические функции идеального газа.

Для адиабатического процесса в системе (Q = 0) мы можем записать ΔU= -A.

Если идеальный газ расширяется адиабатически от объема V и температуры T до бесконечно большого объема, то он совершает работу:

,

а поскольку , то подстановка верхнего предела дает 0, подстановка нижнего приводит к ,

.

Следовательно , а поскольку , то внутренняя энергия идеального газа, имеющего данную температуру, равна U = CVT.

Очевидно, поскольку для идеального газа  dU = CV dT, то по первому закону для идеального газа: dQ = CVdT + pdV.

Разделив правую и левую часть на Т, получим .

Интегрирование дает  .

Константа интегрирования S0 не зависит ни от температуры, ни от давления или объема. Как мы увидим позднее для любого вещества в состоянии идеального газа в константу S0  в качестве характеристики вещества входит только его мольная масса. Далее:

   H = U + pV = U + RT = CVT +RT = CpT,

   F = UTS = CVTTS0 - CVT ln TRT ln V,

   G = H – TS = CpT – T( S0 + R ln R ) – CpT ln T + RT ln p,

Легко видеть, что, вообще говоря,

F = F (T) – RT ln V, G = G (T ) + RT ln p,

где F (T) и G (T) - являются функциями только температуры.

8.2.        Химический потенциал газа в смеси идеальных газов.

Смешение газов – самопроизвольный процесс, происходящий вследствие диффузии. Дальтон (1801) отметил, что если взятые газы имеют одинаковую температуру и давление, то в отсутствие химической реакции а) объем смеси равен сумме объемов составляющих газов в) температура остается постоянной в течение процесса. Т.е., если исходные объемы смешивающихся газов равны Vii , то общий объем смеси равен . Отметим, что Vii = ni Vi , где ni –число молей газа i, Vi – мольный объем его до процесса смешения. Поскольку давление р в процессе смешения не меняется, то для смеси , а для i – газа, занимающего объем смеси V, парциальное давление pi: piV = niRT, следовательно. Обозначим индексом i мольные свойства i – ого газа. Тогда для смеси газов:

           и, следовательно,

,

и энергия Гельмгольца смеси:

.

Теперь становится возможным вычислить химический потенциал i – ого газа:            где  - функция только температуры, а  - концентрация i - ого газа. Поскольку для смеси , то ,

и химический потенциал i –ого газа можно выразить через другие величины:

.

Очевидно, что μi(T) – химический потенциал газа, когда Ci = 1; μ' (T,p) – химический потенциал, когда xi = 1, т.е. это мольная энергия Гиббса чистого газа i; μ''(T) – химический потенциал i - ого газа при pi = 1.

8.3.        Энтропия смешения.

Энтропия смеси газов равна (см. выше): , но .

Поскольку газ i имел до смешения давление p и объем Vii = nVi, имеем:

, и энтропия смеси тогда: .

Полином в скобках представляет собой мольную энтропию газа i до процесса смешения, поэтому сумма есть не что иное, как энтропия системы до процесса смешения, следовательно, изменение энтропии системы в результате смешения газов  или в расчете на 1 моль смеси:

.

Поскольку , то работа, которую можно получить в результате обратимого процесса смешения газов: .

Очевидно, что для разделения смеси газов на компоненты нужно затратить работу .

Однако, это только теоретическая величина, практически затрачиваемая работа будет намного больше, причем, чем меньше отличаются по свойствам компоненты, тем большая потребуется работа.

Например, разделение изотопов урана осуществляют, используя гексафторид урана. Природная смесь содержит 99,3 % U238 F6 и 0,7 % U235F6. Так вот теоретически необходимо затратить 0,023 квт·час на выделение 1 кг U235F6, практически приходится затрачивать 1,2·106 квт·час или в 50·106 раз больше.

Мы видим также, что возрастание энтропии при смешении газов зависит только от количества молей этих газов, но не зависит от их природы. В предельном случае, когда смешивается один и тот же газ, разделенный сначала перегородкой на две части, увеличения энтропии не должно быть, так как в этом случае после удаления перегородки никакого термодинамического процесса в системе не происходит. Таким образом, смешение идентичных газов нельзя рассматривать как предельный случай смешения различных газов. Легко сообразить, что если смешиваемые газы имели до смешения одинаковое давление р, то после смешения они имеют парциальные давления pi <p, а если газы идентичны, то давление не меняется. При переходе от образования смеси сколь угодно близких (разделимых) газов к смеси одинаковых газов величина ΔmixS испытывает скачок. Это утверждение получило название парадокса Гиббса.


Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.