Меню
Поиск



рефераты скачать Основы метрологии

j-ой составляющей НСП (границы интервала, внутри которого находится эта составляющая, определяемые при отсутствии сведений о вероятности ее нахождения в этом интервале). При Р = 0,90 и 0,95 k(P) равен 0,95 и 1,1, соответственно при любом числе слагаемых m1. При Р = 0,99 значения k(P) следующие (табл. 3.3):

Таблица 3.3


m1

k(P)

m1

k(P)

5 и более

1,45

3

1,30

4

1,40

2

1,20


Если составляющие НСП распределены равномерно и заданы доверительными границами Q(P), то доверительную границу НСП результата измерения вычисляют по формуле

 , (3.4)

где k и kj - те же, что и в предыдущем случае, коэффициенты, соответствующие доверительной вероятности Р и Рj соответственно; m1 - число составляющих НСП.

Среднее квадратическое отклонение (СКО) результата измерения с однократным наблюдением вычисляют одним из следующих способов:

1. Если в технической документации на СИ или в МВИ указаны нормально распределенные составляющие случайной погрешности результата наблюдения (инструментальная, методическая, из-за влияющих факторов, оператора и т.д.), то СКО вычисляют по формуле

 ,

где m2 - число составляющих случайной погрешности; Si - значения СКО этих составляющих.

Доверительную границу случайной погрешности результата измеренияя Î(Р) в этом случае вычисляют по формуле

 , (3.5)

где zP/2 - значение нормированной функции Лапласа в точке Р/2 при доверительной вероятности Р (табл. 3.4):

Таблица 3.4


Р

zP/2

Р

zP/2

0,90

1,65

0,97

2,17

0,95

1,96

0,98

2,33

0,96

2,06

0,99

2,58


2. Если в тех же документах случайные составляющие погрешности результата наблюдения представлены доверительными границами Îi(P) при одной и той же доверительной вероятности P, то доверительную границу случайной погрешности результата измерения с однократным наблюдением при доверительной вероятности вычисляют по формуле

 .

3. Если случайные составляющие погрешности результата наблюдения определяют предварительно в реальных рабочих условиях экспериментальными методами при числе наблюденийи ni <30, то:

 ,

где t - коэффициент Стьюдента, соответствующий наименьшему числу наблюдений nmin из всех ni, можно найти в [4] или в любом справочнике по теории вероятностей; S(x) - оценки СКО случайных составляющих погрешности результата наблюдения, определяемых по формуле (3.10). Если в эксперименте невозможно или нецелесообразно определить СКО составляющих случайной погрешности и определено сразу суммарное СКО, то в формуле (3.5) m2 = 1.

4. Если случайные составляющие погрешности результата наблюдений представлены доверительными границами Î(Pi), соответствующими разным вероятностям Рi, то сначала определяют СКО результата измерения с однократным наблюдением по формуле

 ,

где zPi/2 - значения функции Лапласа. Затем вычисляют Î(P) по формуле (3.4).

Для суммирования систематической и случайной составляющих погрешностей рекомендуется следующий способ:

Если  Q(P)/S(x) < 0,8, (3.6)

то НСП Q(P) пренебрегают и окончательно принимают Î(P) за погрешность результата измерения D(P) при доверительной вероятности Р.

Если Q(P)/S(x) > 0,8, (3.7)

то пренебрегают случайной погрешностью и принимают D(P) = Q(P).

Если 0,8 £ Q(P)/S(x) £ 8, то доверительную границу погрешности результата измерений вычисляют по формуле

 , (3.8)

где KS(g) =  ;  .

2. Измерения с многократными наблюдениями. Обработку результатов в этом случае рекомендуется начать с проверки на отсутствие промахов (грубых погрешностей). Промах — это результат xп отдельного наблюдения, входящего в ряд из n наблюдений, который для данных условий измерений резко отличается от остальных результатов этого ряда. Если оператор в ходе измерения обнаруживает такой результат и достоверно находит его причину, он вправе его отбросить и провести (при необходимости) дополнительное наблюдение взамен отброшенного.

При обработке уже имеющихся результатов наблюдений произвольно отбрасывать отдельные результаты нельзя, так как это может привести к фиктивному повышению точности результата измерения. Поэтому применяют следующую процедуру. Вычисляют среднее арифметическое  результатов наблюдений хi по формуле

 . (3.9)

Затем вычисляют оценку СКО результата наблюдения как

 . (3.10)

Находят отклонение vп предполагаемого промаха xп от :

vп = | xп - | .

По числу всех наблюдений n (включая xп) и принятому для измерения значению Р (обычно 0,95) по [4] или любому справочнику по теории вероятностей находят z(P,n) — нормированное выборочное отклонение нормального распределения. Если vп < z×S(x), то наблюдение xп не является промахом; если vп ³ z×S(x), то xп — промах, подлежащий исключению. После исключения xп повторяют процедуру определения  и S(x) для оставшегося ряда результатов наблюдений и проверки на промах наибольшего из оставшегося ряда отклонений от нового значениям (вычисленного исходя из n - 1).

За результат измерения принимают среднее арифметическое [см. формулу (3.9)] результатов наблюдений хi. Погрешность  содержит случайную и систематическую составляющие. Случайную составляющую, характеризуемую СКО результата измерения, оценивают по формуле

 .

В предположении принадлежности результатов наблюдений хi к нормальному распределению находят доверительные границы случайной погрешности результата измерения при доверительной вероятности Р по формуле Î(P) = t(P,n) × S() , (3.11)

где t - коэффициент Стьюдента.

Доверительные границы Q(Р) НСП результата измерения с многократными наблюдениями определяют точно так же, как и при измерении с однократным наблюдением — по формулам (3.3) или (3.4).

Суммирование систематической и случайной составляющих погрешности результата измерения при вычислении D(Р) рекомендуется осуществлять с использованием критериев и формул (3.6 – 3.8), в которых при этом S(x) заменяется на S() = S(x)/ .

3. Косвенные измерения. Значение измеряемой величины А находят по результатам измерений аргументов а1, . . . , аi,…am, связанных с искомой величиной уравнением

f(a1,….ai….am). (3.12)

Вид функции f определяется при установлении модели ОИ.

Косвенное измерение при линейной зависимости. Искомая величина А связана с m измеряемыми аргументами уравнением

 ,

где bi - постоянные коэффициенты.

Предполагается, что корреляция между погрешностями измерений ai отсутствует. Результат измерения А вычисляют по формуле

 ,

где  — результат измерения ai с введенными поправками. Оценку СКО результата измерения S(A) вычисляют но формуле

 ,

где  — оценка СКО результата измерений .

Доверительные границы Î(Р) случайной погрешности  при нормальном распределении погрешностей  

 , (3.13)

где t(P,nэф) — коэффициент Стьюдента, соответствующий доверительной вероятности Р (обычно 0,95, в исключительных случаях 0,99) и эффективному числу наблюдений nэф , вычисляемому по формуле

 ,

где ni —число наблюдений при измерении аi.

Доверительные границы Q(Р) НСП результата такого измерения, сумму Q(Р) и Î(Р) для получения окончательного значения D(Р) рекомендуется вычислять с использованием критериев и формул (3.3), (3.4), (3.6) — (3.8), в которых m1, Qi, и S(x) заменяются, соответственно, на m, bi×Qi, и S().

Косвенные измерения при нелинейной зависимости. При некоррелированных погрешностях измерений аi используется метод линеаризации путем разложения функции f(а1, . . . , am) в ряд Тейлора, то есть

f(а1, . . . , am) = ,

где — отклонение отдельного результата наблюдения аi от ; R — остаточный член.

 Метод линеаризации допустим, если приращение функции f можно заменить ее полным дифференциалом. Остаточным членом

 пренебрегают, если ,

где  — оценка СКО случайных погрешностей результата измерения . При этом отклонения D должны быть взяты из возможных значений погрешностей и такими, чтобы они максимизировали R.

Результат измерения  вычисляют по формуле = f(.

Оценку СКО случайной составляющей погрешности результата такого косвенного измерения S() вычисляют по формуле

 ,

а Î(Р) — по формуле (3.13). Значение nэф , границы НСП Q(Р) и погрешность D(Р) результата косвенного измерения при нелинейной зависимости вычисляют так же, как и при линейной зависимости, но с заменой коэффициентов bi на ¶f/¶ai

Метод приведения (для косвенных измерений с нелинейной зависимостью) применяется при неизвестных распределениях погрешностей измерений ai и при корреляции между погрешностями ai для получения результата косвенного измерения и определения его погрешности. При этом предполагается наличие ряда n результатов наблюдений aij измеряемых аргументов аi. Сочетания aij, полученных в j-м эксперименте подставляют в формулу (3.12) и вычисляют ряд значений Aj измеряемой величины А. Результат измерения  вычисляют по формуле .

Оценку СКО S() - случайной составляющей погрешности  - вычисляют по формуле

 ,

а Î(Р) —по формуле (3.11). Границы НСП Q(Р) и погрешность D(Р) результата измерения  определяют описанными выше способами для нелинейной зависимости.


3.6.3. Выбор измерительных средств по допустимой погрешности измерения

При выборе измерительных средств и методов контроля изделий учитывают совокупность метрологических, эксплуатационных и экономических показателей. К метрологическим показателям относятся: допустимая погрешность измерительного прибора-инструмента; цена деления шкалы; порог чувствительности; пределы измерения и др. К эксплуатационным и экономическим показате­лям относятся: стоимость и надежность измерительных средств; продолжительность работы (до ремонта); время, затрачиваемое на настройку и процесс измерения; масса, габаритные размеры и рабочая нагрузка.


3.6.3.1. Выбор измерительных средств для контроля размеров

На рис. 3.3 показаны кривые распределения размеров деталей (утех) и погрешностей измерения (умет) с центрами, совпадающими с границами допуска. В результате наложения кривых умет и утех происходит искажение кривой распределения у(sтех, sмет), появляются области вероятностей т и п, обусловливающие выход размера за границу допуска на величину с. Таким образом, чем точнее технологический процесс (меньше отношение IT/Dмет), тем меньше неправильно принятых деталей по сравнению с неправильно забракованными.

Решающим фактором является допускаемая погрешность измерительного средства, что вытекает из стандартизованного определения действительного размера как и размера, получаемого в результате измерения с допустимой погрешностью.

Допускаемые погрешности измерения dизм при приёмочном контроле на линейные размеры до 500 мм устанавливаются ГОСТом 8.051, которые составляют 35-20% от допуска на изготовление детали IT. По этому стандарту предусмотрены наибольшие допускаемые погрешности измерения, включающие погрешности от средств измерений, установочных мер, температурных деформаций, измерительного усилия, базирования детали. Допускаемая погрешность измерения dизм состоит из случайной и неучтённой систематической составляющих погрешности. При этом случайная составляющая погрешности принимается равной 2s и не должна превышать 0,6 от погрешности измерения dизм .

В ГОСТе 8.051 погрешность задана для однократного наблюдения. Случайная составляющая погрешности может быть значительно уменьшена за счёт многократных наблюдений, при которых она уменьшается в  раз, где n - число наблюдений. При этом за действительный размер принимается среднеарифметическое из серии проведённых наблюдений.

При арбитражной перепроверке деталей погрешность измерения не должна превышать 30% предела погрешности, допускаемой при приёмке.

Значения допустимой погрешности измерения dизм на угловые размеры установлены по ГОСТу 8.050 - 73.

Для определения т с другой доверительной вероятностью необходимо сместить начало координат по оси ординат.

Кривые графиков (сплошные и пунктирные) соответствуют определенному значению относительной погрешности измерения, равной

,

где s — среднее квадратическое отклонение погрешности измерения;

IТ—допуск контролируемого размера.

При определении параметров т, п и с рекомендуется принимать

Амет(s ) = 16 % для квалитетов 2—7, Амет(s ) =12 % - для квалитетов 8, 9,

Амет(s ) =10 % - для квалитетов 10 и грубее.

Параметры т, п и с приведены на графиках в зависимости от значения IT/sтех , где sтех — среднее квадратическое отклонение погрешности изготовления. Параметры m, n и с даны при симметричном расположении поля допуска относительно центра группирования контролируемых деталей. Для определяется m, n и с при совместном влиянии систематической и случайной погрешностей изготовления пользуются теми же графиками, но вместо значения IT/sтех принимается

для одной границы  ,

а для другой -  ,

где aТ — систематическая погрешность изготовления.

При определении параметров m и n для каждой границы берется половина получаемых значений.

Возможные предельные значения параметров т, п и с/IТ, соответствующие экстремальным значениям кривых (на рис. 3.4 – 3.6), приведены в табл.3.5.

Таблица 3.5


Aмет(s)

m

n

c/IT

Aмет(s)

m

n

c/IT

1,60

0,37-0,39

0,70-0,75

0,01

10,0

3,10-3,50

4,50-4,75

0,14

3,0

0,87-0,90

1,20—1,30

0,03

12,0

3,75-4,11

5,40-5,80

0,17

5,0

1,60-1,70

2,00-2,25

0,06

16,0

5,00-5,40

7,80-8,25

0,25

8,0

2,60-2,80

3,40-3,70

0,10






Первые значения т и п соответствуют распределению погрешностей измерения по нормальному закону, вторые — по закону равной вероятности.

Предельные значения параметров т, п и с/IТ учитывают влияние только случайной составляющей погрешности измерения.

ГОСТ 8.051—81 предусматривает два способа установления приемочных границ.

Первый способ. Приемочные границы устанавливают совпадающими с предельными размерами (рис. 3.7, а).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.