Меню
Поиск



рефераты скачать Определение и обоснование видов и режимов структурной обработки сплава Cu+2,3%Be

         Продолжительности выдержки должна быть достаточна для протекания СП — гомогенизации матричного твердого раствора по растворенному компоненту (tэфф). Эта выдержка довольно длительна. На практике бериллиевые бронзы при данном отжиге выдерживают в течении 1¸3 часов [3].

         Скорость охлаждения регламентируется т.к. при окончании выдержки в сплаве согласно диаграмме состояния наблюдается ФП:

Ø    растворение-выделение;

Ø    эвтектоидное.

         Скорость охлаждения должна быть достаточно низкой, чтобы обеспечить протекание соответственных ФП по диффузионному механизму.


         б) рекристаллизационный.

Температура нагрева или выдержки определяется:

                   .

         Т.к. ниже tс согласно диаграммы состояния (рис.1.1) мы имеем гомогенный твердый раствор a  , то n = 0,4 ¸ 0,45:

                   .

         Температура рекристаллизационного отжига:

                   ,

где 30 ¸ 50 - необходимый интервал перегрева для начала структурного превращения.

         Продолжительность выдержки должно быть достаточной для протекания СП — первичной рекристаллизации ( t эфф)

         Скорость охлаждения  регламентируется т.к. в сплаве согласно диаграмме состояния наблюдается ограниченная растворимость Cu в Be (Vохл £ Vкр.охл).

II) Отжиги 2 рода:

а) гетерогенизирующий.

Температура нагрева или выдержки:

                   ,

где 30 ¸ 50 - необходимый интервал перегрева для начала ФП растворения.

Продолжительность выдержки должна быть достаточна для протекания ФП растворения и пост фазовых СП.

         Скорость охлаждения должна быть достаточно медленной, чтобы превращение было полным и фазовый состав соответствовал равновесному [4].

         Vохл  £  Vкр.охл (критическая скорость охлаждения при отжиге)


б) с фазовой перекристаллизацией.

Температура нагрева или выдержки:

                   ,

где 30 ¸ 50 - необходимый интервал перегрева для начала ФП полиморфного или эвтектоидного.

         Т.к. при этой температуре в сплаве сосуществуют две фазы, то данная перекристаллизация является неполной (неполный отжиг). Для проведения полной фазовой перекристаллизации нужно нагрев осуществлять в однофазную область a, что производится при ранее назначенном гетерогенизирующем отжиге. А, так как , в принципе, параметры охлаждения и выдержки при этом у них сходны, то они в данном сплаве могут считаться взаимно заменяющими.


                   III) Закалки:

         а) с полиморфным превращением.

Температура нагрева или выдержки:

                  

где 30 ¸ 50 - необходимый интервал перегрева для прохождения эвтектоидного ФП, которое включает в себя полиморфное.

         Продолжительность выдержки должна быть достаточной для протекания эвтектоидного ФП.

         Скорость охлаждения должна быть достаточно высокой, чтобы исключить распад пересыщенного матричного раствора в процессе охлаждения в диффузионной области превращения.

         В общем случае Vохл ³ Vкр.охл (критическая скорость охлаждения при закалке, проходящий по данному ФР).

         б) без полиморфного превращения.

Температура нагрева или выдержки:

,

где 30 ¸ 50 - необходимый интервал перегрева для начала ФП растворения.

         Продолжительность выдержки должна быть достаточной для протекания ФП растворения-выделения.

         Скорость охлаждения должна быть достаточно высокой, чтобы исключить распад пересыщенного матричного раствора в процессе охлаждения. Однако если сплав в дальнейшем будет подвергнут старению закалка может быть не очень резкой [3].

         В общем случае Vохл ³ Vкр.охл (критическая скорость охлаждения при закалке, проходящий по данному ФР).

         Так как данная закалка производится с температур больших, чем значение температуры фазового равновесия эвтектоидного превращения, то ее нельзя назвать чисто закалкой на пересыщенный твердый раствор. Она, в данном сплаве, является смешанной, поэтому и назначаем именно ее.


IV) Стабилизирующая обработка:

         а) старение.

Температура старения:

                   ,

         Продолжительность выдержки должна быть достаточна для протекания ФП и получения устойчивого состояния сплава [4].

         Скорость охлаждения при стабилизирующих обработках обычно не регламентируются.


б) отпуск.

Максимальная температура отпуска:

                   ,

         Продолжительность выдержки должна быть достаточна для протекания СП и получения более равновесного состояния сплава [4].

         Скорость охлаждения при стабилизирующих обработках обычно не регламентируются.



2.4.2 Параметры деформационно-термической обработки:

а) термомеханическая обработка. ВТМО и НТМО стареющих сплавов.

ВТМО: минимальная температура горячей деформации

,

где 0,7 ¸ 0,9 - коэффициент не зависящий от типа сплава.

         Так как она соответствует двухфазной области на диаграмме состояния (см. рис.1), что не желательно для данной обработки, то корректируем ее в сторону увеличения до 810°С.

         Используемая степень деформации (истинная) е = 0,3…0,5.

         Если за время деформации успела пройти полигонизация, то последующая выдержка не нужна. Если же нет, то продолжительность выдержки должна быть достаточной для завершения полигонизации.

         Скорость охлаждения должна быть больше или равной критической скорости охлаждения при закалке на пересыщенный твердый раствор (Vкр). После ВТМО должна проводится стабилизирующая обработка — старение.

         Температура старения:

.

         Время выдержки при старении должно быть достаточным для протекания ФП и получения устойчивого состояния сплава.

         Скорость охлаждения при старении не регламентируется.


НТМО: ее особенностью есть деформирование метастабильной при данной температуре фазы, поэтому перед ее проведением должна обязательно идти подготавливающая закалка на это метастабильное состояние.

Температура холодной деформации:

,

где 0,1 ¸ 0,2 - коэффициент не зависящий от типа сплава.

Так как получения температура деформации и так является ниже цеховой и довольно существенно, то проведение последующей закалки для фиксации полученного состояния не требуется.

         Используемая степень деформации (истинная) е = 0,3…0,5.

         После НТМО необходима стабилизирующая обработка — старение.

         Температура старения:

.

         Время выдержки при старении должно быть достаточным для протекания ФП и получения устойчивого состояния сплава.

         Скорость охлаждения при старении не регламентируется.


б) механико-термическая обработка.

Температура холодной деформации:

                   ,

где 0,1 ¸ 0,2 - коэффициент не зависящий от типа сплава.

         Степень деформации е около 0,1.

         После холодной деформации следует произвести нагрев для прохождения полигонизации.

         Температура нагрева

,

где 30 ¸ 50 - необходимый интервал перегрева для начала полигонизации.

         Время выдержки довольно длительно. Это время необходимо для протекания полигонизации и получения полной полигональной субструктуры.

         Скорость охлаждения не регламентируется.



         2.4.3 Параметры химико-термической обработки:

         Насыщающая — эта обработка проводится в активной атмосфере имеющей необходимую концентрацию бериллия в активном состоянии у поверхности изделия.

         Температура нагрева или выдержки должна обеспечить необходимую диффузионную подвижность, чтобы насыщение произошло за практически приемлемое время.

                   ,

где 0.7 ¸ 0,9 - коэффициент не зависящий от типа сплава.

         Здесь мы также попадаем в двухфазную область, что не приемлемо в данном случае, поэтому также корректируем эту температуру, повышая ее до 810°С.

         Длительность выдержки должна быть достаточно велика чтобы обеспечить требуемые величины насыщения поверхности и глубину насыщенного бериллием слоя, и если первое в основном зависит от активности насыщаемой среды, то второе — от времени выдержки.

         Т.к. конечное состояние сплава — пересыщенный твердый раствор, то после нагрева (tв) и выдержки нужно охладить со скоростью большей или равной критической скорости охлаждения при закалке на пересыщенный твердый раствор (Vкр). Тогда стабилизирующей обработкой будет старение (см. параметры ВТМО с закалкой на пересыщенный твердый раствор).

2.5 Построение схем-графиков режимов назначенных видов структурной   обработки.

 

Рис.2  Схема-график режима гомогенизирующего отжига сплава Сu + 2,3 % Ве.

 

 

Рис. 3  Схема-график режима рекристаллизационного отжига.

Рис. 4  Схема-график режима отжига II-го рода (гетерогенизационного и с фазовой перекристаллизацией сплава).

 

 

Рис. 5  Схема-график режима закалки.

Рис. 6  Схема-график режима старения сплава Сu + 2,3 % Ве.

 

 

 

Рис. 7  Схема-график режима отпуска сплава Сu + 2,3 % Ве.

 

 

Рис. 8  Схема-график режима ВТМО стареющего сплава Сu + 2,3 % Ве.

 

 

Рис. 9  Схема-график режима НТМО стареющего сплава Сu + 2,3 % Ве.

 

 Рис.10  Схема-график режима механико-термической обработки.

 

 

Рис. 11  Схема-график режима химико-термической обработки с закалкой на пересыщенный твердый раствор сплава Сu+ 2,3 % Ве.

2.6 Фазовые и структурные превращение в процессе назначения СО.


         Гомогенизирующий отжиг.

         При этой обработке идет выравнивание химического состава по телу зурна (дендрита). Иногда данный отжиг называют диффузионным, т.к. в основе его лежит диффузия. В начале выдержки скопления g располагаются на границах дендритных ячеек, в центре a - фаза. В течение выдержки концентрация выравнивается. Т.к. при отжиге охлаждение достаточно медленное, то сплав при комнатной температуре имеет структуру, в которой g равномерно распределена. Данная СО оказывает влияние на микроструктуру и тонкую структуру. С термодинамической точки зрения  данный отжиг является процессом энтропийным , т.е. осуществляется переход от неоднородного к однородному раствору по концентрации. Причем энтропия в данном случае возрастает с приближением к равновесию концентраций, что повышает скорость процесса. Наиболее интенсивно гомогенизация протекает в начальный период отжига. Повышение температуры отжига действует эффективнее увеличения времени. Данная СО применяется для повышения коррозионной стойкости сплава, улучшения обрабатываемости и др.


Рекристаллизационный отжиг

         Данный отжиг является процессом многостадийным. При нагреве холодно деформируемого сплава происходят следующие термодинамические процессы:

1) движущей силой первичной рекристаллизации является уменьшение плотности дислокаций, а силой тормозящей этот процесс является увеличение поверхностной энергии;

2) на стадии собирательной рекристаллизации и если есть вторичной рекристаллизации термодинамической силой является уменьшение поверхностной энергии;

3) если при нагреве холодно деформируемого сплава происходит полигонизация, то термодинамической силой является не столько снижение плотности дислокаций, сколько изменение дислокационной структуры. При нагреве холодно деформируемого сплава конкурирующим процессом при рекристаллизации является нормализация. При рекристаллизации происходит движение сплошной границы превращений, которая “очищает” сплав от дефектов кристаллизационного строения, в частности дислокаций. При данной обработке сплав разупрочняется, зерна становятся разделены большеугловыми границами. Т.к. при отжиге охлаждение достаточно медленное, то сплав имеет при комнатной температуре структуру из довольно правильных, равноосных кристаллов. Размер зерна зависит от степени деформации температуры нагрева и времени выдержки. Предпочтительна мелкозернистая структура. При данной СО изменения в структуре происходит на уровне тонкой, микроструктуры, атомно-кристаллической структуры в связи с применением кристаллизационной направленностью (тип решетки  не меняется). Причем ведущей является изменение тонкой структуры, т.к. ее изменение вызывает все остальные изменения. Данная СО применяется для разупрочнения, повышения технологической пластичности и ползучести определенного типа текстуры.

         Гетерогенизационный отжиг

         При нагреве в сплаве идет реакция  a + g ® a. Относительно количество фазы, которая полностью переходит в твердый раствор при нагреве и выделяется при обратном медленном охлаждении (по реакции a ® a+g), обычно не превышает 10 -15 % от всего объема сплава. Для данного сплава возможна частичная перекристаллизация  избыточной фазы. В начале изотермической выдержки частично растворяется избыточная фаза и увеличивается концентрация растворенного компонента. Т.о. идут два процесса:

1) процесс концентрационного перераспределения Ве между фазами a и g;

2) процесс перестройки решетки Ве в решетку Сu.

Процесс идет путем образования и роста зародышей фазы a . Эти зародыши возникают только гетерогенным путем на межфазной поверхности раздела. При росте зародышей   a- фазы g- фаза уничтожается. После первой стадии превращения концентрация раствора неоднородна, поэтому идет гомогенизация твердого раствора a. Возможна третья стадия — собирательная рекристаллизация.

         В процессе охлаждения протекают аналогичные процессы:

1. Диффузионное перераспределение Ве между фазами.

2. Перестройка решетки a фазы в  g .

         В зависимости от степени переохлаждения определяется зарождение зародышей (малое переохлаждение - гетерогенное зарождение по границам зерен, большое - зарождение на вакансиях и т.д.). При достаточно длительной выдержке твердый раствор оказывается насыщенным Ве, согласно линии ограниченной растворимости. Сплав остается гетерофазным при нагреве и охлаждении. Данный отжиг оказывает влияние на микроструктуру и тонкую структуру.

         Данная СО применяется как смягчающая обработка для деформированных полуфабрикатов, для повышения технологической пластичности, для повышения коррозионной стойкости .


         Отжиг с фазовой перекристаллизацией.

С эвтектоидным превращением.

Эвтектоидная реакция представляет собой сложную фазовую реакцию,

состоящую обычно из двух элементарных:

1. полиморфное превращение;

2. растворение- выделение.

         Данная СО слабо изучена в системе Сu - Ве. Превращение при нагреве развивается по диффузионному механизму, причем наиболее выражена диффузия Ве, т.к.:

1. Необходимость диффузии Ве обусловлена необходимостью перераспределения концентраций Ве между фазами и образованием твердого раствора.

2. Только насыщение a  до равновесного содержания в ней Ве обуславливает термодинамическую стабильность a  ниже  Тэвт для чистого компонента.

         Значение диффузии атомов Сu выражено в меньшей степени, т.к. изменение концентрации атомов Сu в ходе этого превращения не требуется или требуется очень мало. Данное превращение является многостадийным:

1. Образование зародышей b  на межфазной границе a и b.

2. Рост b-фазы в направлении одновременно обоих фаз. Он заканчивается полным превращением g®b.

3. Растворение a в b.

         В процессе этих реакций происходит две перестройки кристаллической решетки  a®b  и  g®b. После завершения ФП начинаются пост фазовые СП. Поэтому продолжение процесса выглядит так:

4. Гомогенизация  (выравнивание содержания Ве в b- фазе).

5. Рост зерна- b  или собирательная рекристаллизация  зерен-b.

         Т.к. процесс включает полиморфное превращение, а удельные объемы a и b различны ( Vуд.a= Vуд.b ), то в ходе   превращения при нагреве может наблюдаться явление фазового наклепа, т.е. пластическая деформация образовавшейся фазы b.

         При охлаждении:

1. Получаем однородные кристаллы твердого раствора, гетерофазного.

2. Структура с однородным по объему содержанием Ве двух получившихся фаз имеет резко различное содержание Ве.

3. Происходит изменение кристаллической решетки. Т.о. превращение при охлаждении включает:

Ø    полиморфное;

Ø    выделение;

Ø    диффузия Ве.

         При выделении g из b появление зародышей начинается на границе. Размер конечного зерна зависит от размера исходного зерна. Структура меняется на уровне микроструктуры, тонкой и атомно-кристаллической структур. Т.о. после медленного охлаждения получают g-зерна не благоприятные к глубокой вытяжке. Т.е. сплав теряет свою пластичность. Это явление можно устранить путем довольно быстрого охлаждения. Скорее всего, именно из-за образования такой структуры этот вид отжига не получил широкого применения. Данная СО может применяться для устранения пороков структуры, возникших при предыдущей обработке ( литье, горячая деформация, сварка); смягчение сплава перед последующей операцией ( резание) и уменьшения напряжений, если данная структура является конечной.


         Закалка.

         Особенночтью полной закалки в данном сплаве является то, что идет и  ФП в процессе охлаждения по бездиффузионному механизму (если скорости не настолько велики чтобы проскочить его), и изменяется термодинамическая стабильность твердого раствора ( из термодинамически стабильного  при температуре нагрева превращения в состояние метастабильное в процессе охлаждения). Метастабильность закаленного твердого раствора определяется степенью его пересыщения относительно, равновесной концентрации. Т.о.  при нагреве довольно быстро происходит растворения g- фазы и при довольном быстром охлаждении получается структура с малым содержанием g - фазы. СП при данной закалке происходят на уровне тонкой структуры т.к. атомы Ве замещают атомы Cu в твердом растворе. Из-за избытка упругой энергии, возникают остаточные напряжения. Т.о. при закалке повышается концентрация точечных дефектов.

         Основное назначение закалки - подготовка сплава к старению. Часто данную закалку используют как промежуточную смягчающую операцию перед холодной деформацией (НТМО или МТО). Иногда закалка служит окончательной термообработкой для придания изделию необходимого комплекса свойств.

        


         Старение.

         В закаленном сплаве пересыщенный a - раствор содержит избыток растворенного компонента Ве. Закаленный сплав стремится прийти в более стабильное состояние, выделяя избыток растворенного компонента в виде второй фазы. Однако, т.к. данный сплав после закалки на пересыщенный твердый раствор имеет гетерофазное состояние, то старение занимает только часть объема. Что уменьшает получаемый эффект. В данном сплаве диффузионная подвижность при комнатной температуре низкая, поэтому естественного старения не происходит. Старение в общем случае протекает в несколько стадий:

1. Образование зон Гинье-Престона ( участков твердого раствора с резко повышенной концентрацией Ве).

2. Выделение метастабильной фазы g ( т.к. в данном случае меньше работа образования критического зародыша).

3. Переход в стабильное состояние метастабильной g - фазы ( образование стабильной g - фазы сопровождается растворением метастабильной g -фазы).

         Дисперсные выделения склоны к укрупнению, при котором мелкие частицы исчезают, а крупные вырастают( т.е. к коагуляции), что приводит к уменьшению суммарной межфазной энергии [5]. Т.о. данная СО влияет на микроструктуру и тонкую структуру.

         Данная обработка предназначена для увеличения прочностных свойств сплава. С увеличением времени старения (когда начинается переход в стабильное состояние и коагуляция g-фазы) происходит перестаривание сплава (разупрочнение).


         ВТМО, НТМО сплава, закаленного на пересыщенный твердый раствор.

         Сущность ВТМО состоит в том, что после горячей деформации и закалки получается пересыщенный твердый раствор с перекристаллизованной структурой, т.е. с повышенной плотностью несовершенств (границ субзерен, свободных дислокаций). В результате последующего старения сплава с такой структурой возникают повышенные механические свойства. В большинстве случаев оптимальным является выполнение минимум трех условий:

1. Получение к концу горячей деформации перекристаллизованную структуру;

2. Предотвращение возможной рекристаллизации после окончания деформации;

3. Достижение необходимой для старения степени пересыщенности твердого раствора [5].

         Данная обработка влияет на микроструктуру, тонкую структуру.

         Данная обработка достаточно сильно упрочняет сплав не снижая при этом пластичности [6].

Упрочнение при НТМО вызвано двумя причинами:

1. Холодная деформация создает наклеп, и последующее дисперсионное твердение начинается от более высокого уровня твердости сплава;

2. Холодная  деформация увеличивает эффект дисперсионного твердения. При нагреве под старение после холодной деформации рекристаллизация, как правило, не протекает, а развиваются процессы отдыха и полигонизации, несколько уменьшающие упрочнение при НТМО. Следует иметь в виду взаимное влияние этих процессов и распада раствора: выделение тормозят полигонизацию, а полигонизация, если она успела пройти, изменяет плотность и характер распределений [5]. Данная СО влияет на микроструктуру, тонкую структуру.


        

         Механико-термическая обработка

         При нагреве до достаточно высоких температур, после холодной деформации наблюдается полигонизация, которая обеспечивает упрочнение и понижения пластичности в сплаве при данной обработке. Полигонизацией называют образование разделенных малоугловыми границами субзерен. При нагреве дислокации перераспределяются и выстраиваются в стенки одна над другой. При этом под областью разрежения от одной дислокации оказывается область сгущения от  другой дислокации, и поля напряжений соседней дислокаций в значительной мере взаимно компенсируются. Дислокационные стенки — мало угловые границы образуются в результате сочетания процессов скольжения и  переползания дислокаций. Скорость переползания, являющегося по-своему механизму диффузионным, т.е. наиболее медленным процессом, контролирует скорость образования мало угловых границ. В результате полигонизации вытянутые зерна, окруженные высокоугловыми границами оказываются состоящими из более или менее равноосных, размером в несколько микрометров, субзерен, раздельных малоугловыми границами. В объеме субзерен плотность дислокаций очень низкая. Данная СО  влияет на тонкую структуру сплава.

         Данная СО упрочняет сплав [3].





         Химико-термическая обработка.

         Для изменения химического состава изделие нагревают в активной среде. Во время выдержки изделия диффузионно обогащается элементами из внешний среды. Можно выделить три одновременно идущих процесса, обеспечивающих обогащение изделия из внешней среды.

         Первый процесс образование химического элемента в активном атомарном состоянии. В отдельных случаях, например, при поступлении атомов металла непосредственно из расплава. Эта стадия отсутствует.

         Второй процесс — адсорбция атомов поверхностью изделия. Адсорбционный процесс может включать простую физическую адсорбцию и одновременно химическую адсорбцию. Адсорбция всегда экзотермический процесс, приводящий к уменьшению энергии Гибсса.

         Третий процесс при химико-термической обработке — диффузия адсорбированных атомов от поверхности в глубь изделия. Адсорбция протекает очень медленно [5]. Данная СО влияет на микроструктуру и тонкую структуру.

         Данная СО упрочняет поверхностный слой изделия из данного сплава [6].

3. Выводы.

 

         1. В данной курсовой работе были рассмотрены и обоснованны основные виды и режимы структурных обработок для сплава Cu + 2,3 % Ве. При этом опирались на предварительный анализ данного сплава и на диаграмму состояния сплава. Затем были определены параметры режимов СО по классам назначенных видов СО, построены схемы-графики режимов назначенных видов СО. и проанализирован фазовый состав и структурные превращения при конкретных СО.

         2. В результате работы определили возможность применения таких видов СО:

Ø    гомогенизирующий отжиг;

Ø    рекристаллизационный отжиг;

Ø    гетерогенизационный отжиг;

Ø    отжиг с фазовой перекристаллизацией;

Ø    закалку на мартенсит;

Ø    отпуск;

Ø    закалку на пересыщенный твердый раствор;

Ø    старение;

Ø    ВТМО и НТМО;

Ø    механико-термическую;

Ø    химико-термическую обработку.

         3. Применение гомогенизирующего отжига позволит устранить последствия дендритной ликвации. Рекристаллизационный отжиг снимет наклеп и повысит пластичность. Гетерогенизационный отжиг улучшит деформируемость слитков, повысит коррозионную стойкость. Отжиг с фазовой перекристаллизацией является разупрочняющей обработкой. Любая закалка увеличивает пластичность и уменьшит прочность. ВТМО является обработкой наиболее упрочняющей данный сплав. НТМО также достаточно сильно повышает прочностные свойства при этом довольно резко упадет пластичность Механико-термическая обработка также упрочняет данный сплав. Химико-термическую обработку можно использовать для изменения химического состава и структуры на поверхностном слое а иногда и по всему сечению изделия.

         4. В настоящее время для сплавов системы Cu-Be применяют чаще всего отжиги для разупрочнения, а дисперсионное твердение для упрочнения. В данной курсовой работе доказано, что данные СО наиболее сильно влияют на структуру и механические свойства сплава Cu+2,3 % Be. Но, несмотря, на это необходимо дальнейшее развитие других более сложных видов СО.

Перечень ссылок.


1.     Берман С.И. Меднобериллиевые сплавы. — М.:  Металлургия, 1966.

2.     Абрикосов Н.Х. Исследование системы медь-бериллий. — М.,1952,т.XXI.

3.     Блантер М.Е. Теория термической обработки. — М.: Металлургия, 1984.

4.     Новиков И.И., Строганов Г.Б., Новиков А.И. Металловедение термообработка и рентгенография. — М.: “ МИССИС ”, 1994.

5.     Новиков И.И. Теория термической обработки металлов. — М.: Металлургия, 1986.

6.     Тылкин М.А. Справочник термиста ремонтной службы. — М.: Металлургия, 1981.

7.     Колачев Е.В. Термическая обработка цветных сплавов. — М.,1999.

8.     Лахтин Ю.М. Металловедение и термическая обработка. — М.: Металлургия, 1976.


Страницы: 1, 2, 3




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.