|
Спиральный гидроциклон СГМ-ТПУ Разработанный на кафедре техники и разведки ТПУ малогабаритный спиральный гидроциклон имеет ряд существенных преимуществ перед серийно выпускаемыми гидроциклонами: - простота конструкции, регулировки, эксплуатации, монтажа, высокий ресурс работы; - высокая степень очистки раствора от абразивных и недиспергированных глинистых частиц – 0.2%; - незначительные потери промывочной жидкости через песковую насадку – до 2-3%; - отсутствие автономного насоса и привода. Назначение и устройство гидроциклона Спиральный гидроциклон СГМ-ТПУ предназначен для промывочных жидкостей от песка, грубодисперсных частиц поступающих в раствор вместе с глиной, и частиц выбуренной породы, которыми раствор обогащается в процессе бурения скважин. Гидроцклон СГМ-ТПУ состоит из корпуса 7, с питающим штуцером 6, шнековой спирали 9, со сливным патрубком 8 для вывода очищенного раствора, конуса 2, заканчивающегося песковой насадкой 1 и регулировочными кольцами 3, 4, 5. Питающий штуцер 6 приварен касательно к корпусу 7. Кольцо 5 используется при производительности очистки 200-220 л/мин, при этом кольца 4, 3 – извлекаются. Кольца 4,5 ставятся при расходе 160 л/мин. Все три кольца 3,4,5 ставятся при расходе 100 л/мин. Для снижения износа колец песковой насадки их следует изготавливать из износостойких материалов. Рис. 8. Спиральный гидроциклон СГМ-ТПУ Принцип работы спирального гидроциклона СГМ-ТПУ Принцип действия любого гидроциклона заключается в следующем. Исходная пульпа (раствор) подается в гидроциклон через питающую насадку, установленную по касательной к боковой поверхности цилиндрической части непосредственно под крышкой. Продукты классификации (твердая фаза и раствор) разгружаются соответственно через песковую насадку и сливной патрубок, расположенные по оси гидроциклона. Поток жидкости идет по спирали вдоль стенок конуса к песковой насадке, через которую выходит только часть общего потока. Гидроциклон быстро заполняется вращающейся жидкостью и вдоль его оси образуется вращающийся поток. При вращении пульпы шлам, песок и недиспергированные глинистые частицы за счет центробежных сил отбрасываются в периферийную зону, то есть к стенкам корпуса гидроциклона. Вблизи оси гидроциклона центробежная сила становится настолько большой, что жидкость разрывается, образуется воздушной ядро (вихревой шнур), имеющее вид воздушного столба. При нормальных условиях (достаточном давлении на входе, открытых разгрузочных отверстиях) воздушный столб возникает по всей высоте гидроциклона, соединяя по оси сливной патрубок и песковую насадку. Внешний вращающийся поток вместе с продуктами сепарации уходит через песковую насадку, основной внутренний поток поднимается вдоль воздушного столба и разгружается через сливной патрубок в емкость с очищенным раствором. С учетом условий курсового задания не рентабельно применять выше приведенный гидроциклон, так как он не отвечают современному уровню развитию техники и не может вести к дальнейшему прогрессу. Предлагается использовать спиральный малогабаритный гидроциклон СМГ-С так как: • для привода гидроциклона СМГ-С не требуется дополнительного привода и насоса; • гидроциклон СМГ-С имеет малые размеры; • гидроциклон СМГ-С обеспечивает необходимую тонкость очистки промывочной жидкости, даже при бурении в абразивных породах; • применение гидроциклона СМГ-С не приводит к большим энергозатратам. • гидроциклон СМГ-С, с учетом упрочнения, имеет средний ресурс до списания 2000 часов. 1.5. Выбор принципиальных схем и способов компоновки гидроциклона СМГ-С: 1.5.1.Износ изделия Пульпа, вращающаяся в гидроциклоне с большой скоростью, оказывает истирающее действие на его стенки. Наибольшему износу подвергается нижняя часть гидроциклона вблизи штуцера , на который действую наиболее крупные фракции твердой фазы пульпы при большой концентрации. Сильному истирающему действию подвергается так же питающий патрубок, шнековая спираль и стенки цилиндрической части циклона, в месте на которое попадает с большой скоростью струю питания из патрубка. Сливной патрубок и стенки конической части, примыкающие к цилиндрической части, подвергаются меньшему износу. Износ тем более, чем крупнее и абразивнее твердая фаза пульпы. На истирающее действие, оказываемое пульпой на стенки циклона во время работы, влияют следующие факторы: - Минералогический состав твердой фазы пульпы и форма зерен. Чем больше твердость обрабатываемых частиц пульпы и чем острее кромки зерен, тем истирающее действие, оказываемое ими на стенки циклона, сильнее; - Крупность частиц твердой фазы и плотность пульпы. Чем крупнее частицы и чем больше их в пульпе, тем больше истирающее действие; - Давление пульпы внутри гидроциклона. С увеличением давления соответственно возрастает сила, с которой действуют зерна, вращающиеся в циклоне, на его стенки. Поэтому давление оказывает очень большое давление на степень износа гидроциклона; - Скорость движения пульпы. Изменение скорости движения пульпы в гидроциклоне связано обычно с изменением давления на входе, а так же с отдельными параметрами циклона. Чем выше скорость, тем сильнее истирающее действие. Для того, чтобы гидроциклон СМГ-С обеспечивал требуемый ресурс работы до списания, предлагается упрочнить это изделие. 1.5.2.Обзор способов упрочнения В связи с ускоренным развитием техники крайне актуальными стали вопросы повышения надежности и долговечности деталей машин и установок, повышения их качества и эффективности работы в экстремальных условиях, связанных с абразивным износом, коррозионным воздействием и другими факторами. Изменить свойства поверхности в необходимом направлении можно различными способами. Их можно условно разделить на два вида: - нанесения на поверхность нового материала с необходимыми свойствами; - изменение структуры поверхностного слоя металла, обеспечивающего желаемые изменения свойств. В первом случае применяют такие хорошо известные покрытия как, гальванические, химические, наплавочные и др. Во втором случае поверхностные слои металла подвергают поверхностному пластическому деформированию (ППД), либо преобразуют химическим путем, либо диффузионным насыщением, т. е. методами химико-термической обработки, а так же новыми методами электронно-лучевой и лазерной обработки. Лазерная и электронно-лучевая обработка материалов Поверхностное упрочнение деталей лучом лазера характеризуется рядом преимуществ, а именно: - упрочнение деталей в местах их износа с сохранением свойств материала в остальном объеме; - твердость при этом превышает на 15 - 20% твердость после термообработки существующими способами; - созданием «пятнистого» поверхностного упрочнения значительных площадей, при котором не образуется сплошного хрупкого слоя, склонного к растрескиванию, деформированию, отслаиванию и т.д.; -получение заданных свойств (механических, химических и др.) обрабатываемых поверхностей деталей путем их легирования различными элементами с помощью излучения лазера; - отсутствие деформаций обрабатываемых деталей, обусловленных локальностью воздействия. Широкое внедрение лазерного упрочнения в различные отрасли машиностроения обуславливается рядом благоприятных факторов: - наличием серийного лазерного высокопроизводительного оборудования как импульсного, так и непрерывного действия; - сравнительной простотой процесса, несложным подбором технологических режимов обработки; - большой технико-экономической эффективностью, определяемой достоинствами лазерной термообработки и др. Остановимся более подробно на некоторых методах лазерной обработки Лазерная закалка При воздействии лазерного излучения тонкий поверхностный слой подвергается термообработке. Высокие скорости нагрева (до 105 -106 С/с) и охлаждения (до 108 С/с) приводят к образованию метастабильных фаз перенасыщенных твердых растворов; может возникнуть аморфная структура – структура металлических стекол, обладающая высокой коррозийной стойкостью и износостойкость. По сравнению с обычной закалкой, лазерная закалка дает большой эффект. За рубежом термообработку с помощью CO2 – лазеров мощностью до 15 кВт применяют в серийном производстве автомобилей:, в авиастроении и в машиностроении. Лазерное легирование Улучшить эксплуатационные свойства металлов, в том числе износостойкость, можно с помощью лазерного легирования, сущность которого заключается в расплавлении участка поверхности металла вместе с добавляемыми легирующими элементами, предварительно нанесенными не обрабатываемый участок. По сравнению с известными способами упрочнения (азотирование, борирование, напыление и др.) модификация поверхности легированием при локальном лазерном нагреве и высоких скоростях плавления и кристаллизации обладает целым рядом преимуществ: - экономией легирующих элементов; - минимальным объемом финишных механических обработок; - достаточно хорошей контролируемостью процесса; - высокой скоростью процесса и высоким качеством изделия и др. Легирующие добавки (C, Cr, Nr, N, Wc, Co и др.) наносятся на обрабатываемые поверхности в воде и в жидком стекле. Рекомендуется для поверхностного легирования использовать дешевые материалы, как, например, Ст. 3, 45 и др. Глубину проплавления можно менять от 0,05 мм до 5 мм. Распределения микротвердостей различных сталей по глубине, а также подробная методика расчета концентрации легирующих элементов, режимов обработки приводятся в работе . Лазерное плакирование (лазерная наплавка) Лазерное плакирование заключается в расплавлении предварительно нанесенного на поверхность детали материала, который затем растекается по ней с последующим быстрым затвердением. Один проход лазера позволяет получать покрытия толщиной 6-7 мм шириной 10 мм при плотности излучения q=104 + 105 Вт/см². Нанесение на поверхность износостойких покрытий Увеличение срока службы деталей машин можно обеспечить путем образования на поверхности этих деталей, слоев или покрытий обладающих высоким уровнем требуемых свойств, в том числе высокой износостойкостью. Такой путь представляет значительные резервы экономии сырьевых ресурсов. Применение технологии улучшения свойств поверхности расширяет также перспективу проектирования и производства различного оборудования с более высоким уровнем эксплуатационных показателей, что в свою очередь, позволяет сократить потребление энергии и повысить производительность труда. Наплавка – нанесение слоя расплавленного металла на оплавленную металлическую поверхность путем плавления присадочного материала теплотой кислородно-ацетиленового пламени, электрической или плазменной дуги, лазера и др. – широко используется для восстановления изношенных деталей и создания на поверхности изделия слоя, обладающего повышенной износостойкостью, жаропрочностью и другими свойствами. Преимущества технологии заключаются в следующем: • возможность нанесения покрытий большой толщины; • высокая производительность; • возможность нанесения износостойкого покрытия на основной металл любого состава; • возможность повышения эффективности наплавки путем сочетания с другими способами обработки. К недостаткам технологии наплавки следует отнести: • ухудшения свойств наплавленного слоя из-за перехода в него элементов основного металла; • деформация изделия, вызываемая высокой погонной энергией наплавки; • ограниченный выбор сочетаний основного и наплавленного металла. Для упрочнения деталей машин, работающих в условиях интенсивного абразивного износа, получили распространение электроды марок Т-590, Т-620. Толщина наносимого покрытия или упрочняемого слоя зависит от режимов работы узла трения, его назначения, преобладающего вида изнашивания и величины допустимого износа. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и других, может быть решена при использовании методов металлизации напылением, включающих газопламенную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий. Напыление Методы металлизации напылением в настоящее время развиваются высокими темпами и находят, все большее распространение, благодаря своим широким техническим возможностям. Напылением можно наносить различные покрытия на детали из самых разных материалов металлы и сплавы, карбиды, бориды, фарфор, органические материалы и др. Основной материал, на который напыляется покрытие, не испытывает при этом значительного термического влияния. Важным условием успешного применения указанных методов является тщательная предварительная подготовка поверхности детали под покрытие, определяющая прочность сцепления напыленного покрытия с основным металлом. Для удаления с поверхности жиров и масел широко используют промывку растворителями, например, бензином. Для снятия оксидной пленки детали подвергают дробеструйной или пескоструйной обработке Из существующих методов напыления наибольшими возможностями обладают методы плазменного детонационного напыления, а так же способ электроимпульсного нанесения покрытия. Катодное распыление (вакуумное распыление)- это распыление в вакууме поверхности напыляемого материала ускоренными ионами и конденсацией распыленных частиц (атомов, ионов) на деталь. Термическое напыление (вакуумное испарение) заключается в нагревании напыляемого материала в вакууме до температуры, при которой давление паров над его поверхностью достигает 1 Па и выше, испарений и последующей конденсации паров на деталь. Ионное осаждение (реактивное вакуумное напыление) осуществляется путем подачи в рабочую камеру небольших количеств активных газов, которые, вступая в реакцию с напыляемым материалом, обеспечивают осаждение на деталь уже готовых соединений. Химико-термические методы упрочнения Химико-термическая обработка (ХТО) позволяет получить в поверхностном слое изделие сплав, практически любого состава и, следовательно, обеспечить комплекс необходимых свойств – физических, химических, механических и др. В настоящее время накоплен большой опыт по применению различных видов и методов ХТО в машиностроении. Азотирование (ионное). Ионное азотирование (азотирование в тлеющем разряде) по сравнению с обычным газовым процессом имеет целый ряд преимуществ: • ускоряет диффузионный процесс насыщения поверхностных слоев азотом в 2 раза; • позволяет получить диффузионный слой регулируемого состава и строения при обычном азотировании происходит охрупчивание поверхности; • характеризуется незначительными деформациями изделий и высоким классом чистоты поверхности; • обладает большой экономичностью (электроэнергия, расход насыщающихся газов); • не токсично и отвечает требованиям по защите окружающей среды. В качестве азотосодержащих газов применяют аммиак, азот и смесь азота с водородом. Износостойкость азотированной стали в 1.5 – 4 раза выше износостойкости закаленных высокоуглеродистых и цементованных сталей. Для осуществления ионного азотирования освоен серийный выпуск специализированных установок НГВ-6.6/6-И1; НШВ-9.18/6-И2 и др., выпускаемых, в частности, Саратовским заводом электротермического оборудования. Карбонитрация (жидкое азотирование). Широко применяется за рубежом. Приводится для упрочнения деталей машин с целью повышения их износостойкости. Процесс проводится при T=560-570 ˚С в расплаве цианита калия. Общая глубина слоя составляет порядка 0.15 – 0.6 мм с поверхностной твердостью (700 – 1300 HV). Карбонитридная зона способствует увеличению задиростойкости, уменьшает коэффициент трения, повышает износостойкость, обуславливает хорошую прирабатываемость трущихся поверхностей и сопротивление коррозии. Проанализировав все вышеприведенные методы упрочнения, можно сделать вывод, что наиболее подходящим для предстоящего упрочнения метала является метод (ХТО) – химико-термического упрочнения, а в частности ионное азотирование.
Сущность ионного азотирования заключается в следующем. В разряженной азотосодержащей атмосфере (1.3*10² - 17*10² Па) между катодом и анодом возбуждается тлеющий разряд и ионы газа, бомбардируя поверхность катода, нагревают ее до температуры насыщения, при которой происходит насыщение поверхностного слоя ионами азота. Температура азотирования составляет 470˚ - 580˚ С, рабочее напряжение колеблется от 400 до 1100 В. Продолжительность процесса от нескольких минут до 24 часов. Для разных марок сталей определены оптимальные режимы процесса, обеспечивающие требуемую толщину и твердость защитного слоя. Твердость азотированного слоя не меняется при нагреве до 450 - 500˚ С. Обычно общий слой азотирования (особенно при повышенных контактных напряжениях) составляет 0.4 – 0.5 мм. Ионное азотирование следует использовать в тех случаях, когда контактные напряжения не слишком велики и деталь работает в условиях трения скольжения, или абразивного износа. Азотирование данного вида проводят в печах различной конструкции периодического и непрерывного действия – шахтных, камерных, толкательных и конвеерных. Основными контролируемыми и регулируемыми параметрами газового азотирования являются: температура; продолжительность; давление; состав насыщающей среды. Упрочнение метала гидроциклона следует производить в камерной печи при температуре 570˚С, с временем насыщения 9 часов, защитный слой при этом составит 0.52 мм. В этом случае будет достигнут ресурс в 2000 часов работы гидроциклона до списания. Безопасность труда при проведении процессов азотирования При проведении процесса азотирования предусматривают меры по защите работающих от возможных действий опасных и вредных производственных факторов в соответствии с ГОСТ 12.0.003 – 75. Уровни физически опасных и вредных производственных факторов не должны превышать значений, установленных санитарными нормами. Производственное оборудование участка азотирования должно соответствовать требованиям ГОСТ 12.2.003 – 74 и ГОСТ 12.3.004 – 75. Работающие на участке азотирования должны использовать средства индивидуальной защиты, предусмотренные санитарными нормами и соответствующие требованиям ГОСТ 12.4.011 – 75. При работе с технологическими материалами, а так же при хранении и транспортировании их и отходов производства должны соблюдаться требования ГОСТ 12.3.004 – 75. На рабочих участках азотирования должны быть разработаны рабочие инструкции по безопасности труда.
Монтаж гидроциклона При монтаже, гидроциклон необходимо устанавливать вертикально и крепить двумя хомутами к стене бурового здания с помощью болтов. Хомуты следует изготавливать из стальных разных по размеру пластин: габаритные размеры верхнего хомута пластины: 346 х 40 х 3; габаритные размеры нижнего хомута пластины: 326 х 40 х 3; Пластины следует изогнуть в форме полуокружности, как показано на рис.9 радиус верхней пластины 45 мм. радиус нижней пластины 40 мм. Рис.9 эскиз хомута. Крепить хомут к буровому сданию предлагается болтами, как это показано на рис.10. Рис.10. Способ крепления хомутов к буровому сданию. III. ЭСКИЗНЫЙ ПРОЕКТ Цель курсового задания заключается в модернизации гидроциклонной установки СГМ-ТПИ, уменьшение его габаритных размеров, упрощение технологии изготовления и увеличения срока службы. В гидроциклонную установку входят: малогабаритный спиральный гидроциклон СМГ-С; соеденительные шланги; 3 штуцера с различными по диаметру отверстиями; хомуты, для крепления гидроциклона к стене бурового здания, болты. На Рис. 11. показан гидроциклон СМГ-С в рабочем положении, закреплённый на стенке бурового здания с помощью хомутов. Рис. 11. Эскиз гидроциклонной установки СМГ-С. Принцип работы гидроциклонной установки СМГ-С. В процессе бурения скважины, по мере ее углубки и зашламовывания очистного агента, возникает необходимость в очистке промывочной жидкости, зашламованный глинистый раствор поднимаясь по затрубному пространству направляется через отводной патрубок превентора в гидроциклон, где проходит очистку седиментационным осаждением, чему способствует 3 различных штуцера. Очищенная жидкость из гидроциклона направляется в зумпф, откуда через фильтр всасывается патрубком бурового насоса, который направляет промывочную жидкость с постоянным давлением, через гибкий шланг и сальник-вертлюг, в скважину, далее цикл повторяется. В комплект гидроциклонной установки СМГ-С входят три песковых штуцера с различными проходными отверстиями, для различных режимов отчистки бурового агента от зашламовывания. Отверстия в них выполняются в виде конуса в верхней части. Начальный диаметр конуса штуцера, должен быть равен конечному диаметру внутренного конуса гидроциклона. Применение штуцеров зависит от зашламованности бурового агента и производительности бурового насоса. Так штуцер (Рис.12,а) используется при производительности насоса 200-220 л/мин, штуцер (Рис.12,б) используется при расходе 160 л/мин, штуцер (Рис.12,в) ставится при производительности насоса 100 л/мин. Для снижения износа штуцеры следует упрочнить при помощи химико-термического упрочнения (ХТО). Для крепления хомутов к стенке бурового здания, выбираем болты марки СЧ12-28, отлитых из серого чугуна. Шаг резьбы – 2 мм; диаметр – 20 мм Чтобы исключить различного рода вибрации в процессе работы гидроциклона, между хомутами и корпусом гидроциклона не должно быть зазоров. Поэтому, очевидно, что необходимо сделать расчет. С помощью этого расчета мы определим, на сколько оборотов можно затянуть гайку. Толщина стенки бурового здания =100 мм.
Решение: Допускаемое напряжение для болта = 80 МПа, для пластины = 60 МПа. Принимаем = 2*105 МПа, = 0.7*105 МПа [ 5,табл. 2.4, стр 70]. При затягивании гайки пластина будет сжиматься, а болт растягиваться. Применяя метод сечений и составляя уравнение равновесия для сил (рис. 14), получим
Таким образом задача статически не определима, так как неизвестных сил две, а статика для системы сил, направленных по одной прямой, дает лишь одно уравнение. Для составления уравнения перемещений рассуждаем следующим образом: при завертывании гайки на оборотов она переместится на . Так как вначале торец гайки касался шайбы, то это перемещение могло быть осуществлено за счет деформаций болта и пластины. Рис. 14 Предположим, что пластина абсолютно жесткая, тогда перемещение гайки равно удлинению болта. Если допустить, что пластина податливая, а болт абсолютно жесткий, то перемещение гайки равно сжатию пластины. Фактически обе детали податливы и при затягивании гайки деформируются. Следовательно, перемещение гайки равно сумме абсолютных значений удлинения болта и сжатия пластины. или . (1) Вычислим допускаемые силы для болта и пластины (для болта не учитываем влияние резьбы) (2) (3) В качестве допускаемой должна быть принята меньшая сила Вычисляем коэффициенты податливости болта и пластины: (4) (5) Определяем допускаемое по условию прочности число оборотов гайки: (6) Заключение Гидроциклон СМГ-С рекомендуется использовать в неосложненных геолого-технических условиях, он может быть рекомендован для использования в организациях занимающихся геологоразведочным бурением. Данная установка будет находить оптимальное применение при бурении на твердые полезные ископаемые с применением промывки глинистым раствором. По сравнению с гидроциклоном СГМ-ТПИ данная гидроциклонная установка обладает следующими преимуществами: • простота конструкции, эксплуатации, регулировки, монтажа, высокий ресурс работы; • высокая степень очистки промывочной жидкости – до 0.2%; • незначительные потери промывочной жидкости через штуцеры; • уменьшены габаритные размеры и металлоемкость конструкции; Технические характеристики модернизированного гидроциклона СМГ-С по сравнению с гидроциклоном СГМ-ТПИ остались неизменными. С учётом упрочнения средний ресурс гидроциклона СМГ-С до списания приблизился к 2000 часов. Список использованной литературы 1. Поваров А. И. Гидроциклоны на обогатительных фабриках. -М.: Недра, 1978. -267 с. 2. Мустафаев А. М., Гутман Б. М. Гидроциклоны в нефтедобывающей промышленности. -М.: Недра, 1971. -260 с. 3. Рябчиков С. Я., Дельва В. А., Чубик П. С. Руководство к лабораторным работам по буровым машинам и механизмам. – Томск: изд.ТПУ, 1994.-112 с. 4. Резниченко И. Н. Приготовление, обработка и очистка буровых растворов. -М.: Недра, 1982. -230 с. 5. Ицкович Г. М. Сопротивление материалов: Учеб. Для учащихся машиностроит. Техникумов. -7-е изд., испр. –М.: Высш. Шк., 1986. -352 с.: ил. 6. Бабаев С. Г. Надежность и долговечность бурового оборудования. –М.: Недра, 1984. -184 с. 7. Поваров А. И. Гидроциклоны. М.: Госгортехиздат, 1961. -267 с. 8. Лахтин Ю.М., Арзамасов Б.Н. Химико-термическая обработка металлов. – Учебное пособие для вузов. – М.: Металлургия, 1985. 256 с. |
Новости |
Мои настройки |
|
© 2009 Все права защищены.