Меню
Поиск



рефераты скачать Математические методы экономики

Здесь - выпуск продукции при единичной интенсивности j-го базового процесса, - уровень интенсивности, - количество затрат вида k, необходимых при единичной интенсивности способа j. Как видно из (4.2.8) , если выпуск, произведенный при единичной интенсивности и затраты, необходимые на единицу интенсивности, известны, то общий выпуск и общие затраты находятся путем сложения выпуска и затрат соответственно для каждого базового процесса при выбранных интенсивностях. Заметим, что задача максимизации функции f по в (4.2.8) при заданных ограничениях-неравенствах является моделью анализа производственной деятельности (максимизация выпуска при ограниченных ресурсах).

Линейная производственная функция (функция с взаимозамещением ресурсов) применяется при наличии линейной зависимости выпуска от затрат:

где - норма затрат k-го вида для производства единицы продукции (предельный физический продукт затрат).


Методы математического моделирования рисковых ситуаций. Риск и неопределенность в осуществлении экономической деятельности. Место методов математического моделирования в общей схеме управления риском. Основные механизмы управления риском — прямое воздействие на факторы риска и диверсификация. Цели моделирования механизмов управления риском. Методы моделирования неопределенности и риска экономической деятельности.

Любая сфера человеческой деятельности, в особенности эконо­мика или бизнес, связана с принятием решений в условиях неполно­ты информации. Источники неопределенности могут быть самые разнообразные: нестабильность экономической и/или политической ситуации, неопределенность действий партнеров по бизнесу, слу­чайные факторы, т.е. большое число обстоятельств, учесть которые не представляется возможным (например, погодные условия, неоп­ределенность спроса на товары, неабсолютная надежность процес­сов производства, неточность информации и др.). Экономические решения с учетом перечисленных и множества других неопределен­ных факторов принимаются в рамках так называемой теории приня­тия решений - аналитического подхода к выбору наилучшего дейст­вия (альтернативы) или последовательности действий. В зависимо­сти от степени определенности возможных исходов или последст­вий различных действий, с которыми сталкивается лицо, прини­мающее решение (ЛПР), в теории принятия решений рассматрива­ются три типа моделей:

• выбор решений в условиях определенности, если относительно каждого действия известно, что оно неизменно приводит к некото­рому конкретному исходу;

• выбор решения при риске, если каждое действие приводит к одному из множества возможных частных исходов, причем каждый исход имеет вычисляемую или экспертно оцениваемую вероятность появления. Предполагается, что ЛПР эти вероятности известны или их можно определить путем экспертных оценок;

• выбор решений при неопределенности, когда то или иное дей­ствие или несколько действий имеют своим следствием множество частных исходов, но их вероятности совершенно не известны или не имеют смысла.

Проблема риска и прибыли - одна из ключевых в экономиче­ской деятельности, в частности в управлении производством и финансами. Под риском принято понимать вероятность (угрозу) по­тери лицом или организацией части своих ресурсов, недополучения доходов или появления дополнительных расходов в результате осу­ществления определенной производственной и финансовой политики.

Различают следующие виды рисков:

            производственный, связанный с возможностью невыполнения фирмой своих обязательств перед заказчиком;

            кредитный, обусловленный возможностью невыполнения фирмой своих финансовых обязательств перед инвестором;

            процентный, возникающий вследствие непредвиденного изме­нения процентных ставок;

            риск ликвидности, обусловленный неожиданным изменением кредитных и депозитных потоков;

            инвестиционный, вызванный возможным обесцениванием ин­вестиционно-финансового портфеля, состоящего из собственных и приобретенных ценных бумаг;

            рыночный, связанный с вероятным колебанием как рыночных процентных ставок собственной национальной денежной единицы, так и курса зарубежных валют.

Риск подразделяется на динамический и статический. Динамиче­ский риск связан с возникновением непредвиденных изменений стоимости основного капитала вследствие принятия управленческих решений, а также рыночных или политических обстоятельств. Такие изменения могут привести как к потерям, так и к дополнительным доходам. Статический риск обусловлен возможностью потерь ре­альных активов вследствие нанесения ущерба собственности и по­терь дохода из-за недееспособности организации.

Все участники проекта заинтересованы в том, чтобы не допус­тить возможность полного провала проекта или хотя бы избежать убытка. В условиях нестабильной, быстро меняющейся ситуации необходимо учитывать все возможные последствия от действий конкурентов, а также изменения конъюнктуры рынка. Поэтому ос­новное назначение анализа риска состоит в том, чтобы обеспечить партнеров информацией, необходимой для принятия решений о це­лесообразности участия в некотором проекте, и предусмотреть меры по защите от возможных финансовых потерь.

При анализе риска могут использоваться следующие условия или предположения:

• потери от риска не зависят друг от друга;

• потери по одному из некоторого перечня рисков не обязатель­но увеличивают вероятность потерь по другим;

• максимально возможный ущерб не должен превышать финан­совых возможностей участников проекта.

Все факторы, влияющие на рост степени риска в проекте, можно условно разделить на объективные и субъективные. Объективные факторы непосредственно не зависят от самой фирмы: это инфляция, конкуренция, политические и экономические кризисы, экология, на­логи и т.д. Субъективные факторы непосредственно характеризуют данную фирму: это производственный потенциал, техническое осна­щение, уровень производительности труда, проводимая финансовая, техническая и производственная политика, в частности выбор типа контракта между инвестором и заказчиком. Последний фактор играет особо важную роль для фирмы, поскольку от типа контракта зависят степень риска и величина вознаграждения по окончании проекта.

Исследование риска целесообразно проводить в следующей по­следовательности:

• выявление объективных и субъективных факторов, влияющих на конкретный вид риска;

• анализ выявленных факторов;

• оценка конкретного вида риска с финансовых позиций, опре­деляющая либо финансовую состоятельность проекта, либо его эко­номическую целесообразность;

• установка допустимого уровня риска;

• анализ отдельных операций по выбранному уровню риска;

• разработка мероприятий по снижению риска.

Финансирование проекта, являясь одним из наиболее важных условий обеспечения эффективности его выполнения, должно быть нацелено на обеспечение потока инвестиций для планомерного вы­полнения проекта, на снижение капитальных затрат и риска проекта за счет оптимальной структуры инвестиций и получения налоговых преимуществ. В плане финансирования проекта должны учитывать­ся следующие виды рисков:

• нежизнеспособности проекта;

• налоговый;

• неуплаты задолженностей;

• незавершения строительства.

Высокая степень риска проекта приводит к необходимости по­иска путей искусственного снижения его (риска) возможных по­следствий на состояние дел фирмы.

В существующей практике применяются главным образом четы­ре основных способа управления риском: распределение риска меж­ду всеми участниками проекта (передача части риска соисполните­лям), страхование, резервирование средств на покрытие непредви­денных расходов и диверсификация.

Анализ рисков подразделяется на два взаимно дополняющих друг друга вида: качественный, главная задача которого состоит в определении факторов риска и обстоятельств, приводящих к риско­вым ситуациям, и количественный, позволяющий вычислить разме­ры отдельных рисков и риска проекта в целом.

 Меры риска

Наиболее распространена точка зрения, согласно которой мерой риска коммерческого (финансового) решения или операции следует считать среднеквадратичное отклонение (положительный квадрат­ный корень из дисперсии) значения показателя эффективности этого решения или операции. Действительно, поскольку риск обусловлен недетерминированностью исхода решения (операции), то, чем меньше разброс (дисперсия) результата решения, тем более он пред­сказуем, т.е. меньше риск. Если вариация (дисперсия) результата равна нулю, риск полностью отсутствует. Например, в условиях ста­бильной экономики операции с государственными ценными бума­гами считаются безрисковыми.

Чаще всего показателем эффективности финансового решения (операции) служит прибыль.

Рассмотрим в качестве иллюстрации выбор некоторым лицом одного из двух вариантов инвестиций в условиях риска. Пусть име­ются два проекта Л и В, в которые указанное лицо может вложить средства. Проект А в определенный момент в будущем обеспечивает случайную величину прибыли. Предположим, что ее среднее ожи­даемое значение, математическое ожидание, равно тА с дисперсией SA . Для проекта В эти числовые характеристики прибыли как случайной величины предполагаются равными соответственно тв и SB~. Среднеквадратичные отклонения равны соответственно SA и SB.

Возможны следующие случаи:

a) тА = тв, SA < SB, следует выбрать проект Л;

b) тА > тв, SA < sb, следует выбрать проект А;

c) тА > тв, SA = sb, следует выбрать проект Л;

d) тА > тв, SA >SB;

e) тА < тв, SA <SB.

В последних двух случаях решение о выборе проекта А или В зависит от отношения к риску ЛПР. В частности, в случае d) проект А обеспечивает более высокую среднюю прибыль, однако он и бо­лее рискован. Выбор при этом определяется тем, какой дополни­тельной величиной средней прибыли компенсируется для ЛПР за­данное увеличение риска. В случае е) для проекта А риск меньший, но и ожидаемая прибыль меньше.

Магистральные модели экономики. Магистральная модель накопления основных производственных фондов в конце планового периода. Модель фон Неймана расширяющейся экономики.

Классическая (исходная) модель Неймана строится при следующих предпосылках:

            экономика, характеризуемая линейной технологией, состоит из отраслей, каждая из которых обладает конечным числом производственных процессов, т.е. выпускается несколько видов товаров, причем допускается совместная деятельность отраслей;

            производственные процессы разворачиваются во времени, причем осуществление затрат и выпуск готовой продукции разделены временным лагом;

            для производства в данный период можно тратить только те продукты, которые были произведены в предыдущем периоде времени, первичные факторы не участвуют;

            спрос населения на товары и, соответственно, конечное потребление в явном виде не выделяются;

            цены товаров изменяются во времени.

Перейдем к описанию модели Неймана. На дискретном временном интервале с точками рассматривается производство, в котором n видов затрат с помощью m технологических процессов превращаются в n видов продукции. Мы не будем указывать число отраслей, так как в дальнейшем не понадобится подчеркивать принадлежность товаров или технологий к конкретным отраслям. В модели Леонтьева технологические коэффициенты были отнесены к единице продукта. В модели Неймана, принимая в качестве производственных единиц не отрасли, а технологические процессы, удобно отнести эти коэффициенты к интенсивности производственных процессов.

Интенсивностью производственного процесса j называется объем продуктов, выпускаемых этим процессом за единицу времени. Уровень интенсивности j-го процесса в момент времени t обозначим через (). Заметим, что является вектором, число компонент которого соответствует числу выпускаемых j-ым процессом видов товаров и .

Предположим, что функционирование j-го процесса () с единичной интенсивностью требует затрат продуктов в количестве

и дает выпуск товаров в количестве

Введем обозначения . Пара характеризует технологический потенциал, заложенный в j-ом процессе (его функционирование с единичной интенсивностью). Поэтому пару можно назвать базисом j-го производственного процесса, имея в виду, что для любой интенсивности соответствующую пару затраты-выпуск можно выразить как . Поэтому последовательность пар

представляющих собой затраты и выпуски всех производственных процессов в условиях их функционирования с единичными интенсивностями, будем называть базисными процессами.

Все m базисных процессов описываются двумя матрицами

где A- матрица затрат, B- матрица выпуска. Вектор называется вектором интенсивностей. Соответствующие этому вектору затраты и выпуски по всем m процессам можно получить как линейную комбинацию базисных процессов (6.4.1) с коэффициентами :

Говорят, что в производственном процессе базисные процессы (6.4.1) участвуют с интенсивностями . Как видно из (6.4.2) , неймановская технология, описываемая двумя матрицами A и B единичных уровней затрат и выпуска, является линейной (см. предпосылку 1) в начале параграфа). Рассматривая все допустимые "смеси" базисных процессов, получаем расширенное множество производственных процессов

которое и отражает допустимость совместной деятельности отраслей. Возможность совместного производства нескольких продуктов в одном процессе следует из того, что в каждом процессе j может быть отличной от нуля более чем одна из величин . Множество (6.4.3) представляет собой неймановскую технологию в статике (в момент t ). Если в матрице A положить n=m, матрицу B отождествить с единичной матрицей, а интерпретировать как вектор валового выпуска, то (6.4.2) превращается в леонтьевскую технологию.

Продолжим описание модели Неймана. Согласно предпосылок 2) и 3), затраты в момент t не могут превышать выпуска , соответствующего предыдущему моменту t-1 (рис. 6.3).

Поэтому должны выполняться условия:

где - вектор запаса товаров к началу планируемого периода.

Обозначим через , вектор цен товаров. Неравенство (6.4.4) можно трактовать как непревышение спроса над предложением в момент t. Поэтому в стоимостном выражении (в ценах момента t) должно быть:

По предположению 5) прибыль базисного процесса на отрезке [t-1,T] равна величине , т.е. затраты осуществляются по цене начала периода, а готовая продукция - по цене момента ее реализации. Таким образом, издержки по всем базисным процессам можно записать как , а выручку - как (рис. 6.4).

Будем говорить, что базисные процессы неубыточны, если , неприбыльны - если

В модели Неймана предполагается неприбыльность базисных процессов. Это объясняется тем, что издержки и выручки разведены во времени, т.е. относятся к разным моментам времени, и в условиях расширяющейся экономики "характерен случай падения цен ()", т.е. покупательская способность денег в момент t будет выше, чем в момент t-1. С таким обоснованием можно согласиться или не согласиться. Главная же причина неприбыльности базисных процессов заложена в определении экономического равновесия. Поясним это чуть подробнее.

Основной предмет исследования Дж. фон Неймана - это возможность существования равновесия в рассматриваемой им динамической модели экономики при заданных в каждый момент ценах. Как следует из определения 5.2, при равновесии в условиях совершенной конкуренции имеет место стоимостной баланс (см. (5.3.8)). Таким образом, в условиях равновесия не создается никакой прибыли, и неравенство #"#">(6.4.6) является отражением этого факта. Поэтому, если в (6.4.6) для некоторого базисного процесса j имеет место строгое неравенство, т.е. предложение превышает спрос:

то должно быть . Иначе говоря, отсутствие "отрицательной прибыли" обеспечивается нулевой интенсивностью. Отсюда получаем

Описание модели Неймана завершено. Совокупность неравенств и уравнений (6.4.4) -(6.4.7) :

где и - матрицы затрат и выпуска соответственно, называется (динамической) моделью Неймана.

Определение 6.2. Говорят, что в экономике наблюдается сбалансированный рост производства, если существует такое постоянное число , что для всех m производственных процессов

Постоянное число называется темпом сбалансированного роста производства.

Содержательно (6.4.9) означает, что все уровни интенсивности возрастают одинаковыми темпами

Раскрывая рекуррентно правую часть (6.4.9), получаем

где - интенсивность процесса j , установившаяся к началу планового периода. Заметим, что t в правой части (6.4.10) является показателем степени, а в левой - индексом.

В случае сбалансированного роста производства, с учетом постоянства темпа роста, последовательность называется стационарной траекторией производства.

Определение 6.3. Говорят, что в экономике наблюдается сбалансированное снижение цен, если существует такое постоянное число , что для всех n товаров

Постоянное число называется нормой процента.

Содержательно (6.4.11) означает, что цены на все товары снижаются одинаковыми темпами

Название "норма процента" для темпа снижения принято по ассоциации с показателем нормы процента (нормы доходности) в формуле сложного процента , где R0 - сумма начального вложения, Rn - получаемая через n периодов конечная сумма, - норма процента. Так как в определении 6.3 речь идет о снижении, то "норма процента" в (6.4.11) входит с отрицательным знаком ().

Из равенства (6.4.10) получаем

где - цены, установившиеся к началу планового периода.

В случае сбалансированного снижения цен последовательность называется стационарной траекторией цен.

Подставляя (6.4.10) и (6.4.12) в модель Неймана (6.4.8), получаем ее "стационарную" форму:

Эта система соотношений показывает, что по стационарным траекториям y и p экономика развивается согласно неизменному динамическому закону. Поэтому такую ситуацию естественно назвать равновесной.

#"1.files/image583.gif">, где y - стационарная траектория производства, p- стационарная траектория цен, а и - соответствующие им темп сбалансированного роста производства и норма процента (темп сбалансированного снижения цен), называется состоянием (динамического) равновесия в модели Неймана (6.4.8).

Сделаем следующие предположения:

а)
в) для каждого j существует хотя бы одно i , такое что ;
г) для каждого i существует хотя бы одно j , такое что ;
д) для каждого t .

Теорема 6.4. Если выполнены условия а)-д), то в модели Неймана (6.4.8) существует состояние равновесия.

Условия в) и г) говорят о наличии в каждом столбце матрицы A и каждой строке матрицы B по крайней мере одного положительного элемента. Содержательно это означает, что среди всех производственных процессов нет таких, которые ничего не тратят, и каждый из n видов продуктов действительно производится. Условие д) имеет чисто техническое предназначение.

Определение 6.5. Число

называется максимальным темпом сбалансированного роста, а число

называется минимальной нормой процента.

Оказывается, что в состоянии равновесия числа и существуют и равны между собой:

если только начальные точки y0 и p0 также удовлетворяют этому равенству.

Траектория производства , удовлетворяющая условиям (6.4.13) при и и соответствующая максимальному сбалансированному росту, т.е. , называется траекторией равновесного роста (или траекторией Неймана, или магистралью). Поскольку эту траекторию можно представить в виде , где , то ее еще называют лучом Неймана а цены (6.4.12), соответствующие минимальной норме процента , называют неймановскими ценами .

В математической экономике магистралью называется траектория экономического роста, на которой пропорции производственных показателей (такие как темп роста производства, темп снижения цен) неизменны, а сами показатели (такие как интенсивность производства, валовый выпуск) растут с постоянным максимально возможным темпом. Таким образом, магистраль - это траектория или луч максимального сбалансированного роста. Ее часто сравнивают со скоростной автострадой. Так, например, для того чтобы добраться из Кемерово в Киселевск как можно быстрее, наиболее целесообразно сначала проехать по автостраде Кемерово-Новокузнецк, а затем уже съехать на ответвляющуюся от нее дорогу в районе Киселевска. Так мы потеряем на дорогу меньше времени и доедем до конечного пункта с большим комфортом, чем если бы мы ехали по обычному шоссе через Ленинск-Кузнецкий и Белово.

Поскольку "оптимальное" или "эффективное" развитие экономики в любом смысле так или иначе связано и должно сопровождаться экономическим ростом, то для достижения любой конечной цели следует поступать аналогичным образом: сначала вывести производство на магистральный путь, т.е. на траекторию (или луч) Неймана, характеризующуюся максимальным темпом роста и минимальной нормой процента (см. (6.4.14)), а по истечении определенного срока времени вывести ее к задуманной цели. Такими целями могут быть максимизация прибыли, минимизация затрат, максимизация полезности от потребления товаров, достижение конкурентного равновесия при наиболее благоприятных условиях, т.е. на более высоком уровне благосостояния населения, и т.д.

Итак, с одной стороны мы имеем магистральные модели, а с другой - оптимизационные или еще шире - нормативные модели экономики. Изучение этих двух моделей во взаимосвязи, т.е. изучение связи между магистральными и оптимальными (в том или ином смысле) траекториями и является предметом магистральной теории. Можно говорить, что магистральная теория является одним из средств качественного анализа оптимальных траекторий. Основной целью этой теории является исследование условий так называемых "слабой" и "сильной" теорем о магистралях. Слабая теорема утверждает, что за исключением некоторого малого периода (или некоторого числа дискретных моментов из ), не зависящего от продолжительности T планового периода, все оптимальные траектории сосредотачиваются в относительной близости к магистральной траектории. Сильная теорема говорит о том, что те небольшие промежутки времени , на которых оптимальные траектории удалены от магистральной, если они существуют, то разве лишь в начале периода , т.е. , или в конце периода , т.е. ; а в середине периода оптимальные траектории расположены в относительной близости к магистральной.

В общем случае в моделях экономической динамики даже при неизменности технологических возможностей утверждения теорем о магистрали не выполняются. Для их выполнения приходится вводить различные дополнительные предположения о свойствах исходной модели экономики. Другой путь состоит в изучении реальных отраслевых пропорций и сравнении их с магистральными. Благодаря техническому прогрессу и изменчивости во времени общественных предпочтений различных благ, реальное состояние экономики при детальном (дезагрегированном) ее описании всегда значительно отличается от магистрального. В то же время, как показывают полученные в этом направлении результаты исследований, при высоком уровне агрегирования экономические пропорции близки к магистральным.

Модель общего экономического равновесия в долгосрочном периоде. Факторы валового национального продукта (ВНП) и его представление при помощи производственной функции макроэкономического анализа. Распределение ВНП по факторам производства. Функция потребления.

Ценность моделей МОБа для анализа макроэкономического равновесия велика, так ведущие факторы и показатели экономики, в частности: сферы и сектора; валовой выпуск; валовой национальный продукт; промежуточный продукт; национальный доход; все национальные потоки; импортно-экспортные связи.

С помощью этой модели могут быть получены данные для анализа основных макроэкономических пропорций, сделан их прогноз.

Модель Леонтьева называется «затраты-выпуск» потому, что отдельные отрасли рассматриваются в балансе двояко:

1.     как выразители совокупного спроса  и покупатели материальных благ и услуг, предложенных другими отраслями (затраты) – это столбцы баланса;

2.     как выразители совокупного предложения  и продавцы материальных благ и услуг, которые они предоставляют сами другим отраслям (выпуск) – это строки баланса.

Модель затраты – выпуск связана с системой национальных счетов (СНС),  принятой в странах с рыночной экономикой.

 Баланс Леонтьева (в свернутом виде).

По вертикали отражаются счета наступлений (покупок), а по горизонтали счета выпуска (продаж).[метка3]

Из этой модели в идеале можно получить следующие виды равновесия:

1.     отраслевое равновесие

Напр.,  для отрасли (1):

Или: сумма счетов затрат отрасли равна сумме счетов выпуска ее продукции.

2.     межотраслевое равновесие, например для обрабатывающей и добывающей промышленности.

Х32Р3=Х23Р2

Или: итог предложения продукции отраслью (3) для отрасли (2) равен итогу спроса отрасли (3) на продукцию отрасли (2). Обычно в реальной жизни такой тип равновесия отсутствует.

3.     Общее равновесие

или: совокупное предложение и совокупный спрос на товары равны.

В ряде случаев может отсутствовать и отраслевое равновесие. Однако в модели Леонтьева в итого все сбалансировано потому, что МОБ отражает факт состоявшихся сделок, реальные рыночные потоки. А это означает, что в модели Леонтьева отражена лишь часть проблем макроэкономического равновесия. Не учитываются факторы, нарушающие это равновесие, например, предприятия-банкроты; склады; дефицитное состояние экономики, экономические циклы.

С помощью МОБ можно проанализировать основные макроэкономические показатели: ВНП, потребление, накопление, ВОП, его структуру, эффективность использования ресурсов, рассчитать форму накопления и т.д.

Приведённая (функциональная) форма статической модели межотраслевого баланса. Мультипликатор Леонтьева (матрица коэффициентов полных материальных затрат). Коэффициенты прямых затрат труда. Баланс трудовых ресурсов.

Для более глубокого изучения межотраслевых связей и совершенствования прогнозирования народного хозяйства, наряду с коэффициентами прямых затрат, большое научное и практическое значение приобретает исчисление так называемых коэффициентов полных затрат, т.е. затрат, связанных с производством того или иного продукта не только прямо, но и косвенно через другие продукты.

Коэффициенты полных затрат тесно связаны с алгебраическим решением системы уравнений межотраслевого баланса. Решая эти уравнения относительно Yi, после того как вместо аij поставлены конкретные числа, а y1,y2,…,yn оставлены в алгебраической форме, получим для каждого Yi выражение следующего вида

Yi = bi1y1 + bi2y2 + … + bijyj + … + bimyn ,

где bij – коэффициенты полных затрат.

Если теперь положить yj = 1, а все остальные значения y равными нулю, то есть y1 = y2 =…= yj-1 = yj+1 =…= yn = 0, то получим Yi = bij.

Таким образом, b1j, b2j,… являются полными затратами 1-го,
2-го,… продуктов на единицу j-го продукта.

Получение коэффициентов полных затрат bij математически отвечает получению матрицы, обратной матрице E-A, т.е. матрицы (E-A).

Дискретная динамическая модель межотраслевого баланса с учетом ввода мощностей. Постановка оптимизационной модели.

Структурная форма модели общего экономического равновесия в долгосрочном периоде. Равновесие и ставка процента.

Виды целевых функций в экономическом анализе.

  Функция, связывающая цель (оптимизируемую переменную) с управляемыми переменными в задаче оптимизации.



Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.