Меню
Поиск



рефераты скачать Коррозионные свойства титана и его сплавов

Коррозионные свойства титана и его сплавов

Министерство образования Российской Федерации

Уфимский государственный авиационный технический университет


Факультет - АТС

Кафедра  химии


РЕФЕРАТ

по дисциплине: «Физические основы коррозии»

Тема: Коррозионные свойства титана и его сплавов.

      Оценка           __________                      Выполнила: ст. гр. ФМ - 505  Каримова Л. Р. 

      Дата защиты _________                         Проверил: Попов В.И.

  






                                   Уфа - 2006 г

Содержание

Введение ………………………………………………………………………………………………………2

Общие представление о коррозии металлов…………………………………………………………………3

Поведение титана и его сплавов различных агрессивных средах………………………………………….5

Влияние легирующих элементов в титане на коррозионную стойкость ………………………………….7

Электрохимическая коррозия под действием внутренних макро – и микрогальванических пар ……….8

Особенности взаимодействия титана с воздухом ………………………………………………………….10

Взаимодействие титана с кислородом………………………………………………………………………11

Газонасыщение титановых сплавов при окислении………………………………………………………..12

Газонасыщение поверхности титанового сплава ВТ6……………………………………………………..13

Явление коррозионного растрескивания……………………………………………………………………15

Защита конструкций и машин, выполненных из титана и его сплавов, от коррозии……………………17

Список используемой литературы…………………………………………………………………………..19

 



Введение

Создание новых технологий и производств приводит к применению агрессивных сред. Использование последних ставит вопрос о конструкционных материалах, стойких к их воздействию. Большой интерес в этом плане представляют металлы подгрупп титана и ванадия. Они уже нашли применение в современном приборостроении. Так, например, они широко используются в ракетной и авиационной технике, а также при создании ядерных реакторов.

Титан и титановые сплавы широко применяются в различных отраслях промышленности, благодаря высоким значениям удельной прочности и коррозионной стойкости.

Сплав ВТ6 относится к числу первых отечественных конструкционных титановых сплавов. В таблице 1 представлен химический состав сплава ВТ6.

Таблица 1 - Химический состав титанового сплава ВТ6.

  Основные

   элементы

Al

V

     Примеси

Fe

Si

O

C

N

H

Zr

Содержание,                %

6,0

4,0

Содержание      не более, %

0,3

0,1

0,2

0,1

0,05

0,015

0,3


Титан может участвовать во многих соединениях, он химически весьма активен. И в то же время титан является одним из немногих металлов с исключительно высокой коррозионной стойкостью: он практически вечен в атмосфере воздуха, в холодной и кипящей воде, весьма стоек в морской воде, в растворах многих солей, неорганических и органических кислотах. По своей коррозионной стойкости в морской воде он превосходит все металлы, за исключением благородных – золота, платины и т. п., большинство видов нержавеющей стали, никелевые, медные и другие сплавы. В воде, во многих агрессивных средах чистый титан не подвержен коррозии. Почему же это происходит? Почему так активно, а нередко и бурно, со взрывами, реагирующий почти со всеми элементами периодической системы титан стоек к коррозии?

Общие представление о коррозии металлов

Получение металлов из их природных соединений всегда сопровождается значительной затратой энергии. Исключение составляют только металлы, встречающиеся в природе в свободном виде: золото, серебро, платина, ртуть. Энергия, затраченная на получение металлов, накапливается в них как свободная энергия Гиббса и делает их химически активными веществами, переходящими в результате взаимодействия с окружающей средой в состояние положительно заряженных ионов:

Меn++ nе ® Ме0 (G>0);                     Ме0 – ne ® Ме n+ (G <0).

                                      металлургия                                             коррозия

            Самопроизвольно протекающий процесс разрушения металлов в результате взаимодействия с окружающей средой, происходящий с выделением энергии и рассеиванием вещества (рост энтропии), называется коррозией. Коррозионные процессы протекают необратимо в соответствии со вторым началом термодинамики.

Подсчитано, что около 20% ежегодной выплавки металлов расходуется в коррозионных процессах. Большой вред приносит коррозия в машиностроении, так как из-за коррозионного разрушения какой-нибудь одной детали может выйти из строя машина, стоящая нередко десятки и сотни тысяч рублей. Коррозия снижает точность показаний приборов и стабильность их работы во времени. Незначительная коррозия электрического контакта приводит к отказу при его включении. Меры борьбы с коррозионными процессами являются актуальной задачей современной техники.

Существенно влияет на коррозионные процессы уровень внешних или внутренних (остаточных) напряжений и их распределение в металле изделия.

Химической коррозии подвержены детали и узлы машин, работающих при высоких температурах, — двигатели поршневого и турбинного типа, ракетные двигатели и т. п. Химическое сродство большинства металлов к кислороду при высоких температурах почти неограниченно, так как оксиды всех технически важных металлов способны растворяться в металлах и уходить из равновесной системы:


2Ме(т) + O2(г)           2МеО(т);

МеО(т)         [МеО] (р-р)


В этих условиях окисление всегда возможно, но наряду с растворением оксида появляется и оксидный слой на поверхности металла, который может тормозить процесс окисления.

Скорость окисления металла зависит от скорости собственно химической реакции и скорости диффузии окислителя через пленку, а поэтому защитное действие пленки тем выше, чем лучше ее сплошность и ниже диффузионная способность. Сплошность пленки, образующейся на поверхности металла, можно оценить по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла (фактор Пиллинга—Бэдвордса).

Коэффициент a (фактор Пиллинга — Бэдвордса) у разных металлов имеет разные значения и приведен в таблице 2.

Таблица 2. Значение коэффициента a для некоторых металлов

Металл

Оксид

a

Металл

Оксид

a

Mg

MgO

0.79

Zn

ZnO

1.58

Pb

PbO

1.15

Zr

ZrO2

1.60

Cd

CdO

1.27

Be

BeO

1.67

Al

Al2­O2

1.31

Cu

Cu2O

1.67

Sn

SnO2

1.33

Cu

CuO

1.74

Ni

NiO

1.52

Ti

Ti2O3

1.76

Nb

NbO

1.57

Cr

Cr2O3

2.02

Nb

Nb2O3

2.81





Металлы, у которых a<1, не могут создавать сплошные оксидные слои, и через несплошности в слое (трещины) кислород свободно проникает к поверхности металла.

Сплошные и устойчивые оксидные слои образуются при a = 1,2—1,6, но при больших значениях a пленки получаются несплошные, легко отделяющиеся от поверхности металла (железная окалина) в результате возникающих внутренних напряжений.


Поведение титана и его сплавов в различных агрессивных средах

Реакции титана со многими элементами происходят только при высоких температурах. При обычных температурах химическая активность титана чрезвычайно мала и он практически не вступает в реакции. Связано это с тем, что на свежей поверхности чистого титана, как только она образуется, очень быстро появляется инертная, хорошо срастающаяся с металлом тончайшая (в несколько ангстрем (1А=10-10м) пленка диоксида титана, предохраняющая его от дальнейшего окисления. Если даже эту пленку снять, то в любой среде, содержащей кислород или другие сильные окислители (например, в азотной или хромовой кислоте), эта пленка появляется вновь, и металл, как говорят, ею «пассивируется», т. е. защищает сам себя от дальнейшего разрушения.
Рассмотрим несколько подробнее поведение чистого титана в различных агрессивных средах: в таких, как азотная, соляная, серная, «царская водка» и другие кислоты и щелочи.

В азотной кислоте, являющейся сильным окислителем, в котором быстро растворяются очень многие металлы, титан исключительно стоек. При любой концентрации азотной кислоты (от 10 до 99%-ной), при любых температурах скорость коррозии титана не превышает 0,1–0,2 мм/год. Опасна только красная дымящая азотная кислота, пересыщенная (20% и более) свободными диоксидами азота: в ней чистый титан бурно, со взрывом, реагирует. Однако стоит добавить в такую кислоту хотя бы немного воды (1–2% и более), как реакция заканчивается, и коррозия титана прекращается.
В соляной кислоте титан стоек лишь в разбавленных ее растворах. Например, в 0,5%-ной соляной кислоте даже при нагревании до 100° С скорость коррозии титана не превышает 0,01 мм/год, в 10%-ной при комнатной температуре скорость коррозии достигает 0,1 мм/год, а в 20%-ной при 20° С–0,58 мм/год. При нагревании скорость коррозии титана в соляной кислоте резко повышается. Так, даже в 1,5%-ной соляной кислоте при 100° С скорость коррозии титана составляет 4,4 мм/год, а в 20%-ной при нагревании до 60° С – уже 29,8 мм/год. Это объясняется тем, что соляная кислота, особенно при нагревании, растворяет пассивирующую пленку диоксида титана и начинается растворение металла. Однако скорость коррозии титана в соляной кислоте при всех условиях остается ниже, чем у нержавеющих сталей.
В серной кислоте слабой концентрации (до 0,5–1% ) титан и большинство его сплавов стойкие даже при температуре раствора до 50–95° С. Стоек титан и в более концентрированных растворах (10–20%-ных) при комнатной температуре, в этих условиях скорость коррозии титана не превышает 0,005–0,01 мм/год. Но с повышением температуры раствора титан в серной кислоте даже сравнительно слабой концентрации (10–20%-ной) начинает растворяться, причем скорость коррозии достигает 9–10 мм/год. Серная кислота, так же как и соляная, разрушает защитную пленку диоксида титана и повышает его растворимость. Ее можно резко понизить, если в растворы этих кислот добавлять определенное количество азотной, хромовой, марганцевой кислот, соединений хлора или других окислителей, которые быстро пассивируют поверхность титана защитной пленкой и прекращают его дальнейшее растворение. Вот почему титан практически единственный металл, не растворяющийся в «царской водке»: в ней при обычных температурах (10–20° С) коррозия титана не превышает 0,005 мм/год. Слабо корродирует титан и в кипящей «царской водке», а ведь в ней, как известно, многие металлы, и даже такие, как золото, растворяются почти мгновенно.
Очень слабо корродирует титан в большинстве органических кислот (уксусной, молочной, винной), в разбавленных щелочах, в растворах многих хлористых солей, в физиологическом растворе. А вот с расплавами хлоридов при температуре выше 375° С титан взаимодействует очень бурно.
В расплаве многих металлов чистый титан обнаруживает удивительную стойкость. В жидких горячих магнии, олове, галлии, ртути, литии, натрии, калии, в расплавленной сере титан практически не корродирует, и лишь при очень высоких температурах расплавов (выше 300–400° С) скорость его коррозии в них может достигать 1 мм/год. Однако есть немало агрессивных растворов и расплавов, в которых титан растворяется очень интенсивно.

 Главный «враг» титана – плавиковая кислота (HF). Даже в 1%-ном ее растворе скорость коррозии титана очень высока, а в более концентрированных растворах титан «тает», как лед в горячей воде. Фтор – этот «разрушающий все» (греч.) элемент – бурно реагирует практически со всеми металлами и сжигает их.
Не может противостоять титан кремнефтористоводородной и фосфорной кислотам даже слабой концентрации, перекиси водорода, сухим хлору и брому, спиртам, в том числе спиртовой настойке йода, расплавленному цинку. Однако стойкость титана можно увеличить, если добавить различные окислители – так называемые ингибиторы, например, в растворы соляной и серной кислот – азотную и хромовую. Ингибиторами могут быть и ионы различных металлов в растворе: железо, медь и др.
В титан можно вводить некоторые металлы, повышающие его стойкость в десятки и сотни раз, например до 10% циркония, гафния, тантала, вольфрама. Введение в титан 20–30% молибдена делает, этот сплав настолько устойчивым к любым концентрациям соляной, серной и других кислот, что он может заменить даже золото в работе с этими кислотами. Наибольший эффект достигается благодаря добавкам в титан четырех металлов платиновой группы: платины, палладия, родия и рутения. Достаточно всего 0,2% этих металлов, чтобы снизить скорость коррозии титана в кипящих концентрированных соляной и серной кислотах в десятки раз. Следует отметить, что благородные платиноиды влияют лишь на стойкость титана, а если добавлять их, скажем, в железо, алюминий, магний, разрушение и коррозия этих конструкционных металлов не уменьшаются.


Влияние легирующих элементов в титане на коррозионную стойкость

Все присутствующие в титане легирующие элементы по коррозионной стойкости можно разделить на четыре группы.

К первой группе относятся легко пассивирующиеся элементы, повышающие коррозионную стойкость титана за счет торможения анодного процесса (в различной степени и в зависимости от природы среды). К этой группе относятся следующие наиболее важные легирующие: Мо, Та, Nb, Zr, V (расположены в порядке убывания благоприятного воздействия на коррозионную стойкость).

Ко второй группе металлов, оказывающих сходное влияние на коррозионную стойкость титана, относятся Cr, Ni, Mn, Fe. Эти элементы, некоторые из которых сами являются коррозионностойкими (Cr, Ni), хотя и не сильно, но снижают коррозионную стойкость титана, особенно в неокислительных кислотах по мере повышения легирования титана.

К третьей группе легирующих элементов, имеющих общие черты влияния на коррозионную стойкость титана, относятся Al, Sn, О, N, С. Установлено, что добавки алюминия снижают коррозионную стойкость титана в активном и пассивном состояниях. В нейтральных средах алюминий (до 5% Al) хотя и оказывает отрицательное влияние, но оно невелико. Понижение коррозионной стойкости при легировании алюминием связано с облегчением анодного и катодного процессов вследствие изменения химической природы пассивных пленок.

Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.