Меню
Поиск



рефераты скачать Контроль за наведенным напряжением

К сожалению, современные УН также не лишены недостатков. Рабочие части некоторых типов УН имеют большие габаритные размеры (УВНК-6-З5кВ – разработчик «Электроком», г. Москва; УВН80-2М - разработчик ООО "Энергозащита", г. Ереван), оснащены встроенным источником питания (УВНК 6-35кВ, УВНИ-10СЗ-ИП - разработчик РЭТО г. Москва), обладают значительной массой (УВНИШ-10СЗИП – разработчик РЭТО, г. Москва, УВНК6-35кВ).

Но даже такой УН обладает некоторыми недостатками: большие габаритные размеры, высокая стоимость. В связи с этим очевидна задача разработки новых более удобных и надежных УН, удовлетворяющих следующим требованиям:

·                    минимальная масса и размеры рабочей части;

·                     яркость светового сигнала должна быть достаточной для уверенного распознавания при высоком уровне внешней засветки;

·                   уровень звукового давления должен быть достаточным для уверенного распознавания при высоком уровне внешних шумов;

·                   высокая надежность;

·                   малая стоимость.


БЕСКОНТАКТНЫЕ УКАЗАТЕЛИ НАПРЯЖЕНИЯ ВЫШЕ 1000 В.


Принцип действия бесконтактного указателя основан на электростатической индукции.

УНБ состоят из рабочей части, изолирующей части и рукоятки. Рабочая часть содержит источник питания, измеритель и индикатор напряжения В зависимости от уровня напряжения ВЛЭП расстояние срабатывания УНБ может составлять от нескольких сантиметров до метра. УНБ и изготавливаются в металлических или пластмассовых корпусах при этом оба варианта допускают непосредственный контакт с проводом ВЛЭП. УНБ в металлическом корпусе не обладают направленностью срабатывания, что позволяет произвольно располагать их относительно провода.

В отличие от УН, отсутствие необходимости непосредственного контакта с проводом упрощает позиционирование УНБ относительно провода, но при этом снижается достоверность тестирования на наличие напряжения. Отсутствие прямого контакта с проводом ВЛЭП не позволяет создать УНБ без источника питания в рабочей части, что усложняет и удорожает его конструкцию в целом. Наличие источника питания вынуждает устанавливать переключатель питания, снижающий надежность работы УНБ.

Эту проблему можно решить, например, с помощью устройства автоматического включения при установке рабочей части УНБ на штангу

Анализируя характеристики УНБ, находящихся в эксплуатации и новейших разработок (УВНБ - разработчик КБ "Луч", г. Ярославль; УН 6-10/Б01 и УВНК 6-35 - разработчик "Электроком", г. Москва), можно сделать вывод, что все они обладают примерно одинаковыми параметрами, за исключением типа источника питания и общей массы.

Специфика эксплуатации и проверки УНБ ставит под сомнение использование их как основного средства защиты, к каковым их относят некоторые производители. Встроенная проверка не может гарантировать достоверности работоспособности УНБ, а тестирование с помощью приборов для проверки контактных указателей напряжения в полевых условиях затруднено или невозможно.

Поэтому, при эксплуатации УНБ необходимо помнить, что они являются только дополнительным средством защиты и не могут быть единственным средством для проверки наличия напряжения.


ОСОБЕННОСТИ ПРИМЕНЕНИЯ УСТРОЙСТВ ДЛЯ ПРОВЕРКИ УКАЗАТЕЛЕЙ НАПРЯЖЕНИЯ ВЫШЕ 1000 В В ПОЛЕВЫХ УСЛОВИЯХ


Перед началом работы с указателем напряжения свыше 1000 В (УН) необходимо проверить его исправность путем прикосновения контактного электрода к токоведущим частям, заведомо находящимся под напряжением. На практике нередки случаи, когда поблизости от места, где должно быть проведено определение отсутствия напряжения, нет токоведущих частей, заведомо находящихся под напряжением (полевые условия). Поэтому, в таких случаях рекомендуется использовать для проверки спе­циальные приборы, служащие носимыми источниками высокого напряже­ния (ППУ).

Ранее в качестве ППУ использовались мегомметры на 1000 В и 2500 В, при вращении рукоятки которых вырабатываемое ими напряжение подводилось к контактному электроду УН. Этот способ проверки исправности указателей имеет явный недостаток – требует наличия специального устройства, которое нередко тяжелее указателя и более громоздко. Еще один способ проверки УН, применяющийся за границей, заключается в том, что указатель, изолирующие трубки которого изготовлены из специального материала (например, пластического поливинилхлорида), натирается сухой тканью. В результате на нем возникает электростатический за ряд, который при касании контактом-наконечником указателя заземленного предмета стекает в землю, вызывая свечение лампочки. Достоинство этого способа является его простота, а недостатком - то, что он обеспечивает проверку главным образом лампы, а не указателя в целом.

Существует еще один способ, обладающий теми же достоинствами и недостатками, что и предыдущий. Он основан на использовании специальной неоновой лампы, внутри которой имеется маленькая капелька ртути. При легком покачивании лампы (т.е. указателя) капелька ртути генерирует электрический заряд, благодаря которому происходит ионизация инертного газа, заключенного в колбе лампы, и его свечение в виде неярких вспышек.

Данный способ применяется в указателях, изготовленных в Германии и США. Ранее на практике часто применялся способ проверки исправного УН путем приближения его щупа к свече зажигания работающего двигателя автомашины или мотоцикла. Однако, сейчас это строго запрещено правилами, Все вышеописанные способы проверки не являются эквивалентными по отношении к реальной воздушной линии (ВЛ), т.к. не обеспечиваю условии проверки, эквивалентных тем, в которых УН используется на практике, т.е. форма напряжения не является синусоидальной, а его значение не составляет 25% от физического напряжения ВЛ и частота не равна 50 Гц.

Анализируя устройства для проверки указателей напряжения свыше 1000 В, как находящиеся в эксплуатации, так и представленные на прошедших за последние годы выставках на ВВЦ (г. Москва), можно также сделать вывод о том, что далеко не все они соответствуют существующим требованиям.

Основным недостатком большинства устройств является отличная от 50 Гц частота испытательного напряжения (15 кГц – УПУН-1 и УПУН-2 – разработчик «Электроприбор», г. Краснодар). Повышение частоты испытательного напряжения влечет за собой снижение емкостного сопротивления указателя, что снижает напряжения зажигания. При этом неисправные указатели, имеющие высокие токи утечки (потребления), повышенное напряжение и т.п., уверенно срабатывают при проверке, но могут неправильно указать отсутствие напряжения на контролируемом с их помощью электрооборудовании в сетях с частотой 50 Гц.  

Для подтверждения факта влияния частоты на параметры указателя были проведены испытания рабочей части УН типа "Оса" (разработчик НПЦ «Электробезопасность" ВятГУ, г. Киров). Для этого человек, держащий рабочую часть УН в руке, контактом-наконечником прикасался к электроду генератора синусоидального напряжения, корпус кото­рого не­изменном значении выходного напряжения, изменялась его частота с фиксацией интервала мигания индикаторного светодиода (рисунок 3). Во втором, при выбранной постоянной частоте мерцания, фиксировалось значение выходного напряжения в зависимости от его частоты (рисунок 9б).


Рисунок  3. Графики зависимости:

а – интервала мерцания светодиода от частоты выходного напряжения;

б – выходного напряжения от его частоты.


Аналогичные зависимости были получены и для других типов УН. Результаты испытаний подтвердили то, что с ростом частоты выходного значения напряжения происходит снижение напряжения срабатывания УН, что обусловлено уменьшением его емкостного сопротивления.

В Южных электрических сетях Кировэнерго на макете реальной ВЛ проведены экспериментальные исследования по определению напряжения срабатывания различных УН. Результаты экспериментов показали, что значение напряжения срабатывания УН составляет порядка 1,5 кВ (25% от фазного напряжения), что соответствует требованиям.

Следует отметить, что широко используемое для проверки УН устройство "Кристалл", согласно паспортным характеристикам, обеспечивает выходное напряжение не ниже 6,5 кВ, что выше фазного напряжения сети 10 кВ и почти в 2 раза выше фазного напряжения сети 6 кВ, испытания должны проводиться напряжением, составляющим 25 % фазного). Выходное напряжение является несинусоидальным (близким к экспоненциальному), что тем более ставит под сомнение эквивалентность проверки указателей подобным устройством.

Так как рассмотренные указатели высокого напряжения имеют большие габаритные размеры и массу, начинают разрабатываться малогабаритные устройства для проверки высокого напряжения, которые находят применение в полевых условиях. По сравнению с УВН, исполь­зующие пьезоэлементы и высокочастотные преобразователи, которые формируют на выходе сигнал, значительно отличающийся от напряжения в линии электропередачи (обычно это серия коротких высоковольтных импульсов), что не позволяет в полной мере проверить исправность указателя напря­жения, так как могут не отреагировать на напряжение промышленной частоты.

Разработанное устройство, в отличие от вышеупомянутых, формирует на контрольном выводе синусоидальное напряжение 1.5 кВ (действующее значение) частотой 50 Гц. Устройство оснащено световой и звуковой сигнализацией наличия испытательного напряжения 1,5 кВ, сис­темой контроля состояния источника питания. Для проверки указателя вы­сокого напряжения с помощью разработанного устройства достаточно прикоснуться щупом указателя к контрольному выводу включенного уст­ройства. Исправный указатель должен показать наличие напряжения. Блок-схема устройства приведена на рисунке 4.



Рисунок 4. Блок-схема устройства.


1- генератор синусоидального (опорного) напряжения;

2- генератор высокочастотных импульсов;

3- компаратор для сравнения выходного напряжения с опорным;

4- выходной каскад;

5- высоковольтный трансформатор;

6- высоковольтный управляемый выпрямитель;

7- фильтр.

Принцип действия прибора основан на получении высоковольтного высокочастотного амплитудно-модулированного напряжения U5 (рисунок 5), которое затем выпрямляется управляемым выпрямителем (рисунок 5).


 








В ходе разработки устройства проведены исследования зависимости максимального выходного напряжения и потребляемого тока от частоты и скважности импульсов высокочастотного генератора (позиция 2 рисунка 10) при различных значениях напряжения питания. Эти исследования проводились с помощью упоминавшейся в предыдущих статьях установки для проведе­ния исследований по применению ультразвука, которая являлась одно­временно источником (ВЧ генератором) и измеряющим вольтметром.

Проведя исследование принципов работы ППУ других производителей (УПУН-1 и УПУВН-1), можно с уверенностью сказать, что они не обеспечивают эквивалентных испытаний УН по отношению к реальной ВЛ.

Таким образом, на практике следует ограничить применение ППУ, - которые не могут обеспечить условий проверки эквивалентных реальным, поскольку это может привести к трагическим последствиям в связи с ошибочной индикацией об отсутствии напряжения на ВЛ или других электроустановках.


СИГНАЛИЗАТОРЫ НАПРЯЖЕНИЯ ДЛЯ ВОЗДУШНЫХ ЛЭП.

СИСТЕМЫ СИГНАЛИЗАЦИИ ДЛЯ УСТРОЙСТВ КОНТРОЛЯ НАЛИЧИЯ НАПРЯЖЕНИЯ.


Для предварительного выявления отсутствия или наличия напряжения возможно применение УН бесконтактного типа, а также некоторых видов сигнализаторов напряжения (СН), достоинством которых является то, что они позволяют провести проверку без подъема на опору, с земли.

Получение информации о наличии напряжения на токоведущих частях электроустановок производится с помощью контактных указателей и бес­контактных сигнализаторов (индикаторов) напряжения. Информация о на­личии и уровне напряжения обычно передается оператору с помощью све­товых и (или) звуковых сигналов опасности, которые обладают различной степенью быстроты и надежности восприятия. Постоянный рост требова­ний надежности восприятия требует новых подходов к задаче выбора и размещения средств отображения информации (индикаторов).

Существуют стандарты, устанавливающие критерии по восприятию световых, звуковых и тактильных сигналов опасности для того, чтобы лю­ди могли опознать эти сигналы и реагировать на них. При создании новых приборов необходимо обеспечить согласование их систем сигналов с су­ществующими стандартами для того, чтобы избежать противоречий и воз­никновения риска неправильной интерпретации.

Сигналы опасности, вырабатываемые средствами измерения и сигнали­зации, должны быть эффективными при всех условиях их использования, включая условия возникновения помех процессу распознавания со сторо­ны окружающей среды. В качестве помех можно рассматривать фоновые оптические и звуковые источники, препятствующие восприятию информа­ционного сигнала. Степень влияния помех зависит от разных факторов, та­ких как расстояние от источника сигнала, направленность излучения, фи­зических свойств среды и т.д.

В настоящее время в зависимости от требований, выдвигаемых к инди­кации, применяются оптические, акустические и тактильные индикаторы. В качестве основных видов индикации чаще всего используют первые два типа индикаторов, обладающих своими достоинствами.

Основная особенность акустических индикаторов заключается в том, что они позволяют получать информацию, в то время когда оператор занят выполнением других задач. Это повышает эффективность при необходи­мости двигаться и быстро реагировать на изменения измеряемой величины (например, превышение заданного порога). Учитывая особенности челове­ческого слуха предпочтительнее всего выбирать частоты в диапазоне от 500 до 3000Гц. В зависимости от степени опасности звуковые сигналы мо­гут иметь разную временную и частотную модель, что позволяет четко разграничивать аварийный сигнал от предупреждающего сигнала. На практике рекомендуется использовать не более двух различных длин волн с соотношением не менее 1:3, а также периодически повторяющиеся груп­пы импульсов с продолжительностью периода от 0,25 до 0,125 с.

При необходимости индицировать большое число состояний можно использовать акустические индикаторы с речевой информацией. Данный вариант более гибкий и легко интерпретируемый, но обладает меньшей помехоустойчивостью по сравнению с обычными звуковыми сигналами.

Оптические индикаторы по сравнению с акустическими индикаторами позволяют передавать большие объемы информации и меньше влиять на показания других приборов. Более высокие требования, предъявляемые к расположению оптических индикаторов относительно поля зрения оператора, снижают пространство приема сигнала и приводят к снижению опе­ративности реакции. На рисунке 6 приведены области пригодности сигна­ла относительно оси зрения 8 в случае нормального зрения оператора. Приведенные углы носят рекомендательный характер и могут манятся, на­пример при восприятии красок они сужаются.

зоº

 

Рисунок 6. Обнаружение сигнала в вертикальном поле зрения


Узнаваемость сигнала может дополнительно обеспечиваться комбина­цией таких характеристик, как: яркость, цвет, пространственное располо­жение, эффект мигания.

Улучшение восприятия опасной ситуации и снижение остроты внима­ния оператора можно получить, применяя комбинированную индикацию. Например, синхронная подача звуковых и световых сигналов расширяет возможности использования приборов в различных условиях.

В случаях затруднения восприятия оптической и звуковой информа­ции необходимо передавать или дублировать данные тактильным спосо­бом, например вибрацией, пропорциональной уровню измеряемой величи­ны. Высокой чувствительностью к тактильным индикаторам обладают ру­ки, но следует учитывать случаи, когда необходимо применять перчатки, заметно снижающие надежность восприятия тактильного сигнала.                           

Страницы: 1, 2, 3, 4




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.