Меню
Поиск



рефераты скачать Конструкция, методика расчёта толкательных методических печей

I –  IIIзоны печи; 0, 1, 2, 3 – границы расчетных зон; t п.н – температура нижней поверхности заготовки (только для зоны III); точечный пунктир – температура газов, введенных в торце зоны II  


Рисунок 7 – Схема трехзонной методической печи и ее температурного режима


В зоне II – сварочной, сжигается топливо и на поверхности нагреваемого материала достигается максимальная температура. Выделение тепла при горении в той или иной мере компенсирует отдачу тепла газами, и этим сдерживается снижение их температуры. Однако обычно при введении топлива через торцовые горелки (или форсунки) наблюдается снижение температуры газов от границы 2 к границе 1 и к торцовой стенке, в которой установлены топливосжигающие устройства.

Первое обусловлено усиленным отбором тепла более холодными заготовками, поступающими из зоны I в зону II. Второе объясняется тем, что вблизи горелок или форсунок только начинается нагрев газов теплом, выделяющимся при горении.

Очевидно, что повышением тепловыделения в начале и конце зоны II путем соответствующего расположения горелок или форсунок можно добиться выравнивания температуры газов по длине всей зоны.

Назначением зоны III является выравнивание температуры в объеме нагреваемых заготовок. При движении последних по водоохлаждаемым глиссажным трубам на нижней поверхности заготовок остаются полосы с пониженной температурой (темные полосы). Нахождение заготовок на сплошном поде зоны III позволяет выровнять нагрев нижней поверхности и одновременно уменьшить перепад температуры на толщине заготовок.

Двухзонный режим работы методических печей предусматривает нагрев металла в зонах I и II, но исключает выдержку. Любая из печей, изображенных на рисунках 3 – 5, конструктивно обеспечивая возможность трехзонного режима работы, является пригодной и для работы по двухзонному режиму, т. е. с повышением температуры поверхности заготовок до самого момента выдачи их из печи.

Большое значение для работы методических печей имеет способ выдачи металла из печи. Различают торцовую и боковую выдачи металла. При торцовой выдаче необходим один толкатель, который выполняет и роль выталкивателя. Для печей с боковой выдачей устанавливают не только толкатель, но и выталкиватель, поэтому такие печи при размещении в цехе требуют больших площадей. Однако с точки зрения тепловой работы печи с боковой выдачей имеют преимущества. При торцовой выдаче через окно выдачи, расположенное ниже уровня пода печи, происходит интенсивный подсос холодного воздуха. Явление подсоса усиливается инжектирующим действием горелок, расположенных в торце томильной зоны. Подсосанный в печь холодный воздух вызывает излишний расход топлива и способствует интенсивному зарастанию подины печи образовавшейся окалиной.

В методических печах с нижним обогревом металл проталкивается по водоохлаждаемым глиссажным трубам.    

 

1.4 Глиссажные трубы методических печей


Как отмечалось, нагреваемый металл в методических печах с нижним обогревом передвигается по водоохлаждаемым глиссажным трубам. На каждый ряд двигающихся в печи заготовок устанавливают по две продольные глиссажные трубы. Расстояние между ними составляет ~ длины заготовки. Для предохранения трубы от истирающего воздействия двигающегося металла к ней приваривают металлический пруток. Продольные глиссажные трубы в пределах значительной части методической зоны печи опираются на продольные огнеупорные столбики (рисунок 8).



Рисунок 8 – Глиссажные трубы трехзонной нагревательной печи


В пределах высокотемпературной зоны продольные глиссажные трубы опираются на поперечные водоохлаждаемые трубы, расположенные на расстоянии 1 – 1,5 м одна от другой. Концы поперечных труб выведены за пределы печи и прикреплены к вертикальным стойкам каркаса печи. В середине поперечные глиссажные трубы опираются на вертикальную опору, выполненную из пары водоохлаждаемых труб, футерованных снаружи огнеупорным кирпичом.

Водоохлаждаемые глиссажные трубы оказывают большое влияние на тепловую работу зоны нижнего обогрева и тепловую работу печи в целом. Расход тепла с охлаждающей водой в методических печах составляет 10%, а иногда и более от всего количества поступающего в печь тепла. Кроме того, глиссажные трубы оказывают значительное охлаждающее действие на металл и препятствует его равномерному нагреву. В связи с этим стремятся выполнить снаружи тепловую изоляцию глиссажных труб, чтобы снизить поступление тепла к стенке трубы и ослабить ее охлаждающее действие. В качестве тепловой изоляции глиссажных труб применяют всевозможные огнеупорные обмазки. Чтобы тепловая изоляция не отлетела, пользуются различными приемами: приваривают металлические прямые и изогнутые штыри, выполняют из огнеупорных масс специальные огнеупорные блоки, которые нанизываются на трубу. Выделяют три перспективные конструкции глиссажных труб:

1) с набивкой огнеупорной массы между шипами, приваренными непосредственно к трубам;

2) с набивными блоками (рисунок 9, а);

3) со сборными блоками из керамических сегментов (рисунок 9, б).

Потери тепла с охлаждающей водой при использовании набивной на шипы изоляции по сравнению с потерями при неизолированной трубе снижаются в 2 – 3 раза, а при навесной изоляции из сегментов или блоков потери удается снизить в 4,6 – 6,3 раза. Значительная разница в эффективности изоляции объясняется тем, что набивная на шипы изоляция из-за большей массы металла в ней характеризуется значительно более высокой, чем блочная изоляция, средней теплопроводностью.

Промышленная проверка срока службы блочной изоляции показала, что для большинства печей, отапливаемых газом, где температура под металлом не превышает 1375о вполне применимы для изоляции подовых труб набивные и сборные шамотные блоки, срок службы которых в указанных условиях составляет от 9 месяцев (в области повышенных температур) до 2 лет (в области пониженных температур).

В печах, отапливаемых мазутом, где температура под металлом достигает 1500о, хорошие результаты показали набивные блоки, изготовленные из магнезитовой (магнезитохромитовой) массы, срок службы которых составляет более 9 месяцев.


а – набивные блоки; б – сборные блоки


Рисунок 9 – Изоляция глиссажных труб

Опыт изоляции труб промышленных печей показал, что при наличии готовых блоков нанесение изоляции по всей печи занимает 5 – 8 часов. После нанесения изоляции печь сразу же может быть поставлена на разогрев по обычному графику.

Следует подчеркнуть, что кроме отмеченного выше значительного снижения потерь тепла с охлаждающей водой, нанесение изоляции на трубы в печи сопровождается, как правило, повышением температур на 150 – 200о, что существенно улучшает условия теплообмена металла с печными газами.

2 Методика расчета


Рассчитать пятизонную методическую печь с нижним обогревом производительностью =72,22 кг/с (260 т/ч) для нагрева слябов сечением 2101400  мм и длиной 10500 мм. Конечная температура поверхности металла =1250оС. Перепад температур по сечению сляба в конце нагрева =50оС. Материал слябов – сталь 35. Топливо – смесь природного и доменного газов с теплотой сгорания =20,9 МДж/м3. воздух подогревается в керамическом блочном рекуператоре до =450оС.

Расчет пламенной печи выполняется в следующей последовательности:

1) расчет горения топлива;

2) определение времени нагрева;

3) определение основных размеров печи;

4) составление теплового баланса, определение расхода топлива;

5) расчет вспомогательного оборудования: рекуператоров, горелок и т. п..


2.1 Расчет горения топлива


Состав исходных газов, %: доменный газ – 10,5 СО2; 28 СО; 0,3 СН4; 2,7 Н2; 58,5 N2; природный газ – 98 СН4; 2N2.

Принимая содержание влаги в газах равным =30 г/м3 получим следующий состав влажных газов, %: доменный газ – 10,1 СО2; 27,0 СО; 0,288 СН4; 56,49 N2; 3,59 Н2О;2,532 Н2; природный газ – 94,482 СН4; 1,928 N2; 3,59 Н2О.

Теплота сгорания газов


                                             


 кДж/м3 МДж/м3;

 кДж/м3 МДж/м3.

По формуле


,                                                                                      

находим состав смешанного газа, %: 4,63 СО; 12,40 СО; 51,21 СН; 1,16 Н; 27,02 N; 3,58НО.

Расход кислорода для сжигания смешанного газа рассматриваемого состава при п=1 равен


                                                                                                                                                                                

 м3/м3.


Расход воздуха при п=1,05


                                                                                 


 м3/м3.


Состав продуктов сгорания находим по формулам


                                                                  

                                                      

                                                                        

                                                                                        


 м3/м3, 

 м3/м3,

 м3/м3,

 м3/м3.

                       

Суммарный объем продуктов сгорания равен


                                                               


 м3/м3.


Процентный состав продуктов сгорания


%;      %;


%;       %;


Правильность расчета проверяем составлением материального баланса.


Поступило, кг:                                 Получено продуктов сгорания, кг:

Газ:                                                   

               

                 

              

                     ______________________________   

                  Всего                  8,007

               Невязка         0,0166 кг

       ___________________________________

Всего                   0,9802

Воздух

       ___________________________________

Итого          8,0236


Для определения калориметрической температуры горения необходимо найти энтальпию продуктов сгорания


 кДж/м3.             

Здесь =602,05 кДж/м3 – энтальпия воздуха при =450оС.

При температуре =2200оС энтальпия продуктов сгорания равна


 кДж/м3.                                                                                                                                                                                                                                                                

При =2300оС


 кДж/м3.                                                                                                       


По формуле  находим


                                                                            


оС.                                   


Приняв пирометрический коэффициент равным =0,75, находим действительную температуру горения топлива

оС.                                                    


2.2 Время нагрева металла

Температуру уходящих из печи дымовых газов принимаем равной =1050оС; температуру печи в томильной зоне на 50о выше температуры нагрева металла, т. е. 1300оС.распределение температур по длине печи представлено на рисунке 10.


Рисунок 10 – Распределение температур по длине методической печи


Поскольку основным назначением методической зоны является медленный нагрев металла до состояния пластичности, то температура в центре металла при переходе из методической в сварочную зону должна быть порядкам 400 – 500оС.

Разность температур между поверхностью и серединой заготовки для методической зоны печей прокатного производства можно принять равной (700 – 800), где  – прогреваемая (расчетная) толщина. В рассматриваемом случае двустороннего нагрева  м и, следовательно, оС, т. е. следует принять температуру поверхности сляба в конце методической зоны, равной 500оС.

Определяем ориентировочные размеры печи. При однорядном расположении заготовок ширина печи будет равна


м.                                                          


Здесь а=0,2 м – зазоры между слябами и стенками печи.

Высоту печи принимаем равной: в томильной зоне 1,65 м, в сварочной 2,8 м, в методической зоне 1,6 м.

Находим степени развития кладки (на 1 м длины печи) для:


методической зоны ;                           

сварочной зоны ;                                 
томильной зоны .             

               

Определим эффективную длину луча


;                                                                   


методическая зона


 м;                                                         


сварочная зона


 м;                                                 


томильная зона


 м;

2.2.1 Определение времени нагрева металла в методической зоне


Находим степень черноты дымовых газов  при средней температуре =0,5(1300+1050)=1175оС.


Парциальное давление СО2 и Н2О равно:


 кПа;

 кПа;

 кПа.м;

кПа.м.


Находим


; ;  .


Тогда


.

        

Приведенная степень черноты рассматриваемой системы равна


 ;


, степень черноты металла принята равной =0,8.

Определяем средний по длине методической зоны коэффициент теплоотдачи излучением





 Вт/(м2.К)


Определяем температурный критерий  и критерий :


;


.


Для углеродистой стали при средней по массе температуре металла


оС.


Критерий Фурье =1,4, тогда время нагрева металла в методической зоне печи равно


с (0,452 ч).


Находим температуру центра сляба при =1,4, =0,341, температурный критерий =0,68:


оС.


2.2.2 Определение времени нагрева металла в I сварочной зоне


Находим степень черноты дымовых газов при =1300оС:


 кПа;   кПа;

 кПа.м;

 кПа.м.


Приведенная степень черноты I сварочной зоны равна


;



 Вт(м2.К).

Находим среднюю по сечению температуру металла в начале I сварочной (в конце методической) зоны

оС.


Находим температурный критерий для поверхности слябов


.


Так как при средней температуре металла оС теплопроводность углеродистой стали равна =29,3 Вт/(м.К), а коэффициент температуропроводности  м2/с, то


.


Время нагрева в I сварочной зоне


с (0,881 ч).


Определяем температуру в центре сляба в конце I сварочной зоны при значениях =0,934, =1,2, =0,53


оС.


2.2.3 Определение времени нагрева металла во II сварочной зоне


Находим степень черноты дымовых газов при =1350оС.


 кПа;   кПа;

 кПа.м;

 кПа.м.


Приведенная степень черноты II сварочной зоны равна


;



 Вт/(м2.К)

Средняя температура металла в начале II сварочной зоны равна


оС.


Температурный критерий для поверхности слябов в конце II сварочной зоны равен


.


При средней температуре металла

оС =28,2 Вт/(м.К),  м2/с.

Тогда


.


Время нагрева металла во II сварочной зоне равно


с (0,727 ч).


Температура центра сляба в конце II сварочной зоны при значениях =1,61, =1,1, =0,4.


оС.


2.2.4 Определение времени томления металла


Перепад температур по толщине металла в начале томильной зоны составляет о. Допустимый перепад температур в конце нагрева составляет о.

Степень выравнивания температур равна



При коэффициенте несимметричности нагрева, равном =0,55 критерий =0,58, для томильной зоны.

При средней температуре металла в томильной зоне оС, =29,6 Вт/(м.К) и  м2/с.

Время томления


с (0,383 ч).


Полное пребывание металла в печи равно


с (2,44 ч).


2.3 Определение основных размеров печи


Для обеспечения производительности 72,22 кг/с в печи должно одновременно находиться следующее количество металла


 кг.


Масса одной заготовки равна


 кг.


Количество заготовок, одновременно находящихся в печи


 шт.


При однорядном расположении заготовок общая длина печи


 м.


По ширине печи =10,9 м


 м2.


Длину печи разбиваем на зоны пропорционально времени нагрева металла в каждой зоне.

Длина методической зоны


 м.


Длина I сварочной зоны


 м.


Длина II сварочной зоны


 м.


Длина томильной зоны


 м.


В рассматриваемом случае принята безударная выдача слябов из печи. В противном случае длину томильной зоны следует увеличить на длину склиза =1,5 м.

Свод печи выполняем подвесного типа из каолинового кирпича толщиной 300 мм. Стены имеют толщину 460 мм, причем слой шамота составляет 345 мм, а слой изоляции (диатомитовый кирпич), 115 мм. Под томильной зоны выполняем трехслойным: тальковый кирпич 230 мм, шамот 230 мм и тепловая изоляция (диатомитовый кирпич) 115 мм.

2.4 Тепловой баланс

 Приход тепла

1. Тепло от горения топлива


В кВт,


здесь В – расход топлива, м3/с, при нормальных условиях.


   2. Тепло, вносимое подогретым воздухом


В кВт.


 3. Тепло экзотермических реакций (принимая, что угар металла составляет 1 %) 


 кВт.


 Расход тепла

1. Тепло, затраченное на нагрев металла


 кВт,


где =838 кДж/кг – энтальпия углеродистой стали при оС; =9,72 кДж/кг – то же, при оС.


2. Тепло, уносимое уходящими дымовыми газами


В кВт.


Энтальпию продуктов сгорания находим при температуре =1050оС

     ___________________________________

    =1622,35 кДж/м3   


3. Потери тепла теплопроводностью через кладку.

Потерями тепла через под в данном примере пренебрегаем. Рассчитываем только потери тепла через свод и стены печи.


Потери тепла через свод

Площадь свода принимаем равной площади пода 396,76 м2; толщина свода 0,3 м, материал каолин. Принимаем, что температура внутренней поверхности свода равна средней по длине печи температуре газов, которая равна


оС.


Если считать температуру окружающей среды равной =30оС, то температуру поверхности однослойного свода можно принять равной =340оС.

При средней по толщине температуре свода оС коэффициент теплопроводности каолина  Вт/(м.К).

Тогда потери тепла через свод печи будут равны

 кВт,


где  Вт/(м2.К).


Потери тепла через стены печи

Стены печи состоят из слоя шамота толщиной =0,345 м и слоя диатомита, толщиной =0,115 м.

Наружная поверхность стен равна:

методическая зона


 м2;


I сварочная зона


 м2;


II сварочная зона


 м2;


томильная зона


 м2;


торцы печи


 м2.


Полная площадь стен равна


 м2.


Для вычисления коэффициентов теплопроводности, зависящих от температуры, необходимо найти среднее значение температуры слоев. Средняя температура слоя шамота равна , а слоя диатомита , где – температура на границе раздела слоев, оС;  – температура наружной поверхности стен, которую можно принять равной 160оС.

Коэффициент теплопроводности шамота


, Вт/(м.К).


Коэффициент теплопроводности диатомита


, Вт/(м.К).


В стационарном режиме


.


Подставляя значения коэффициентов теплопроводности


или


.


Решение этого квадратичного уравнения дает значение


=728,8оС.


Тогда


оС,


оС.


Окончательно получаем


 Вт/(м.К).


 Вт/(м.К).


Количество тепла, теряемое теплопроводностью через стены печи, равно


 кВт,


где  Вт/(м2.К).


Общее количество тепла, теряемое теплопроводностью через кладку


 кВт.

4. Потери тепла с охлаждающей водой по практическим данным принимаем равными 10 % от тепла, вносимого топливом и воздухом


В кВт.


5. Неучтенные потери определяем по формуле



В кВт.


Уравнение теплового баланса


.


Откуда

=5,46 м3/с.


Результаты расчетов заносим в таблицу


Таблица 1 –

 Тепловой баланс методической печи


Статья прихода



кВт (%)


Статья расхода


кВт (%)

Тепло от горения топлива . . . . . . . .

Физическое тепло воздуха . . . . . . . .

Тепло экзотермических реакций . . . . . . . .

   _____________________

Итого:



114114 (83, 82)


17948,06 (13, 18)



4080 (3, 00)

 

________________________

136142,06 (100, 0)

Тепло на нагрев металла . . . . . . . . .

Тепло, уносимое уходящими газами

Потери тепла теплопроводностью через кладку . . . . .

Потери тепла с охлаждающей водой . . . . . . . . . . .

Неучтенные потери

__________________________

Итого:


59820,2 (43, 94)


56602,83 (41, 16)



3908,5 (2, 87)



13206,16 (9, 70)

2604,43 (2, 33)

________________________

136142,06 (100,0)



 Удельный расход тепла на нагрев 1 кг металла


 кДж/кг.


2.5 Расчет рекуператора для подогрева воздуха


Исходные данные для расчета: на входе в рекуператор =0оС, на выходе =450оС. Температура дыма на входе в рекуператор =1050оС. Расход газа на отопление печи =5,46 м3/с. Расход воздуха на горение топлива  м3/с. Количество дымовых газов на входе в рекуператор  м3/с. Состав дымовых газов 10,6 % СО2; 16,8 % Н2О; 0,8 % О2 и 71,8 % N2.

Выбираем керамический блочный рекуператор. Материал блоков – шамот, марка кирпича Б-4 и Б-6. Величину утечки воздуха в дымовые каналы принимаем равной 10 %. Тогда в рекуператор необходимо подать следующее количество воздуха 29,8/0,9=33,1 м3/с.


Количество потерянного в рекуператоре воздуха


 м3/с.


Среднее количество воздуха


 м3/с.


Количество дымовых газов, покидающих рекуператор (с учетом утечки воздуха) равно


 м3/с.


Среднее количество дымовых газов


 м3/с.


Зададим температуру дымовых газов на выходе из рекуператора =650оС. При этой температуре теплоемкость дымовых газов

        

,

      _____________________________

    =1462 кДж/(м3.К)


Теплоемкость дыма на входе в рекуператор (=1050оС)


      _____________________________

    =1,538 кДж/(м3.К)


Теперь  , где =1,3583 кДж/(м3.К) – теплоемкость воздуха при =650оС.

Решая это уравнение относительно , получим =651,3оС651оС.

В принятой конструкции рекуператора схема движения теплоносителей – перекрестный ток. Определяем среднелогарифмическую разность температур для противоточной схемы движения теплоносителей


;


о.


Найдя поправочные коэффициенты


  и  ,


, тогда оС.


Для определения суммарного коэффициента теплопередачи примем среднюю скорость движения дымовых газов =1,2 м/с, среднюю скорость движения воздуха =1,5 м/с.

Учитывая, что эквивалентный диаметр воздушных каналов равен =0,055 м =55 мм, находим значение коэффициента теплоотдачи конвекцией на воздушной стороне


=14 Вт/(м2.К).


Учитывая шероховатость стен, получим

 Вт/(м2.К).


Коэффициент теплоотдачи на дымовой стороне находим по формуле


.


Учитывая, что гидравлический диаметр канала, по которому движутся дымовые газы равен =0,21 м, находим коэффициент теплоотдачи конвекцией на дымовой стороне


=6,4 Вт/(м2.К),


или с учетом шероховатости стен


 Вт(м2.К).


Величину коэффициента теплоотдачи излучением на дымовой стороне определяем для средней температуры дымовых газов в рекуператоре, равной оС.

Среднюю температуру стенок рекуператора принимаем равной


оС.


Эффективная длина луча в канале равна


 м.


При =850,5оС находим


=0,05;   =0,035;   =1,06.


.


При =537,75оС


.


Учитывая, что при степени черноты стен рекуператора , их эффективная степень черноты равна , находим коэффициент теплоотдачи излучением


Вт/(м2.К).


Суммарный коэффициент теплоотдачи на дымовой стороне равен


 Вт/(м2.К).


При температуре стенки =537,75оС коэффициент теплопроводности шамота равен


 Вт/(м.К)


С учетом толщины стенки элемента рекуператора =0,019 м находим суммарный коэффициент теплопередачи по формуле


 Вт/(м2.К),


где  и – соответственно основная поверхность теплообмена и оребренная, м2.

При


 Вт/(м2.К).


Определяем поверхность нагрева и основные размеры рекуператора. Количество тепла, передаваемого через поверхность теплообмена, равно



 кВт.


По следующей формуле находим величину поверхности нагрева рекуператора



 м2.


Так как удельная поверхность нагрева рекуператора, выполненного из кирпичей Б=4 и Б=6, равна =10,3 м2/м3, можно найти объем рекуператора


 м3.


Необходимая площадь сечений для прохода дыма равна


 м2.


Учитывая, что площадь дымовых каналов составляет 44 % общей площади вертикального сечения рекуператора, найдем величину последнего


 м2.


Принимая ширину рекуператора равной ширине печи, т. е. =10,9 м, находим высоту рекуператора


 м.


Длина рекуператора


 м.


2.6 Выбор горелок

В многозонных методических печах подводимая тепловая мощность (а следовательно, и расход топлива) распределяется по зонам печи следующим образом: в верхних сварочных зонах по 18 – 22%; в нижних сварочных зонах по 20 – 25% и в томильной зоне 12 – 18%.

Распределяя расход топлива по зонам пропорционально тепловой мощности, получим: верхние сварочные зоны по 1,09 м3/с; нижние сварочные зоны по 1,23 м3/с, томильная зона 0,82 м3/с.

Плотность газа 1,0 кг/м3, расход воздуха при коэффициенте расхода п=1,05 равен 5,46 м3/м3 газа.

Пропускная способность горелок по воздуху: верхние сварочные зоны  м3/с; нижние сварочные зоны  м3/с; томильная зона  м3/с.

Расчетное количество воздуха определяем по формуле:


;


верхние сварочные зоны


 м3/с;


нижние сварочные зоны


 м3/с;


томильная зона


 м3/с.

Заключение

Технико-экономическая оценка работы методических печей

Широкое применение методических толкательных печей вызвано тем, что эти печи обеспечивают достаточно высокую производительность при невысоком удельном расходе топлива, а также обеспечивают высокий коэффициент использования тепла в рабочем пространстве. Это объясняется наличием методической зоны.

Применение глиссажных труб с рейтерами повышает равномерность нагрева металла (без царапин и холодных пятен) и создает предпосылки для увеличения ширины и длины печи.

Однако все методические печи толкательного типа имеют недостатки, обусловленные невозможностью быстрой выгрузки металла из печи и трудностями перехода от нагрева слябов одного размера к нагреву слябов другого размера. Эти проблемы могут быть решены только при использовании методических печей с шагающим подом.


Список использованных источников


1 Кривандин В.А. Металлургические печи / В.А. Кривандин; профессор, доктор техн. наук. – Москва: Металлургия, 1962 г. – 461 с.

2 Кривандин В.А. Теория, конструкции и расчеты металлургических печей – 2 том / В.А. Кривандин; профессор, доктор техн. наук. – Москва: Металлургия, 1986 г. – 212 с.

3 Телегин А. С. Лебедев Н. С. Конструкции и расчет нагревательных устройств – 2-е издание переработанное и дополненное . Москва: Машиностроение, 1975 г. – 170 с.



Страницы: 1, 2




Новости
Мои настройки


   рефераты скачать  Наверх  рефераты скачать  

© 2009 Все права защищены.