|
Осевая нагрузка, передаваемая схемой US, как видно из вышеприведенного, может быть увеличена за счет увеличения количества роликов и за счет увеличения относительной величины a = R/r. Рассмотрим, выигрышно ли с точки зрения увеличения передаваемой осевой силы увеличение количества роликов за счет уменьшения a = R/r. Определим максимальное значение a = R/r при заданном количестве роликов. Рис. 9. Максимальное заполнение габарита ВКМ роликами. АО = R + r Из треугольника ОСА имеем
Домножим числитель и знаменатель на один и тот же член 1/2r, получим: , т.к. , то Домножим числитель и знаменатель правой части на один и тот же множитель а. (25) По значению из формулы (25) найдем по формуле (19) , затем , и наконец , найдем также по формуле (13) и все данные сведем в табл. 19 и рис. 10. Таблица 19. | ||||||
k |
при =В=150 |
при =В=150 |
при =В=150 |
при =В=150 |
|||
2 3 4 5 6 7 8 |
6,46 2,41 1,43 1,00 0,785 0,611 |
- 0,866 0,707 0,588 0,500 0,434 0,383 |
- 0,9843 0,9718 0,9670 0,9659 0,9664 0,9679 |
- 2,036 1,826 1,774 1,764 1,769 1,783 |
- 6,329 3,043 1,917 1,363 |
- 18,988 12,173 9,586 8,178 |
- 1216,85 212,72 93,57 56,52 |
Добавить рис. На стр.64-66
Из табл. 19 и рис. 10 видим, что для схемы US увеличение количества роликов за счет уменьшения их диаметров (т.е. уменьшения a = R/r) уменьшает осевую силу, развиваемую механизмом, но в то же время значительно уменьшает и габариты механизма. Также замечаем, что для k = 6 =1,00, значит для однорядного расположения роликов при k = 6 a = R/r должно быть меньше 1.
Рассмотрим работу валикокольцевых механизмов раскладки при максимальном рассматриваемом нами угле поворота В = 150. Максимальное усилие прижима должно быть рассчитано при минимальной нагрузочной способности механизма, т.к. во время работы угол В изменяе6тся при реверсе механизма от максимального В = 150 до минимального В = 00 и снова до максимального В = 150, но уже в противоположную сторону.
Минимальная нагрузочная способность ВКМ по схеме вал-ролики (US) при угле В = 150, а по схеме вал-кольца (BRD) при угле В = 00, поэтому усилие прижима роликов или колец к валу должно рассчитываться при этих углах. А значит и сравнение механизмов по передаваемой осевой силе нужно проводить при этих углах, т.е. при = В = 150 для схемы US. Сравнение по осувой силе, передаваемой ВКМ ведем по выражениям .
Выводы
1. При увеличении относительной величины a = R/r нагрузочная способность, а значит и осевое усилие, которое может передать механизм, у схемы вал-ролики (US) возрастает, а у схемы вал-кольца (BRD) убывает.
2. Относительная величина оказывает значительное влияние на нагрузочную способность схемы вал-кольца (BRD). При увеличении осевое усилие, которое может передать механизм, возрастает и возрастает тем сильнее, чем меньеш a = R/r.
3. С увеличением угла разворота В нагрузочная способность схемы вал-ролики (US) убывает, а схемы вал-кольца (BRD) возрастает. Минимальная нагрузочная способность схемы US при В = 150, схемы BRD при В = 00.
4. Сравнение схем по нагрузочной способности нужно вести при минимальной нагрузочной способности, т.е. при В = 150 для схемы US и В = 00 для схемы BRD.
5. Увеличение количества роликов для схемы US увеличивает нагрузочную способность и при большом количестве роликов k схема US может конкурировать по нагрузочной способности со схемой BRD. Но увеличение количества роликов значительно усложняет конструкцию механизма и может привести к появлению нежелательных напряжений в опорах вала, поэтому применение большого количества роликов нецелесообразно.
6. Увеличение количества роликов за счет уменьшения их диаметров при максимальном заполнении габарита уменьшает нагрузочную способность схемы US.
7. С увеличением для схемы BRD максимальный угол разворота B’ уменьшается.
8. Габарит схемы US значительно меньше, чем схемы BRD при одинаковом a = R/r.
9. Сравнивая схему US с одним роликом и схему BRD с тремя кольцами при минимальной нагрузочной способности, т.е. при В = 150 для US и В = 00 для BRD, замечаем:
a) если b = 0,5 для BRD, то при a > 1,09 осевое усилие, передаваемое схемой US выше, чем схемой BRD, при a <= 1,09 осевое усилие, передаваемое схемой BRD выше, чем схемой US.
b) если b = 1,0 для BRD, то при a > 1,31 осевое усилие, которое может передать механизм, схемы US больше, чем схемы BRD, при a <= 1,31 осевое усилие, которое может передать механизм, схемы BRD больше, чем схемы US.
c) если b => 1,5 для BRD осевое усилие, которое может передать механизм, схемы BRD выше, чем схемы US при всех сравниваемых значениях a = R/r.
Используя данные выводы можно дать некоторые рекомендации по выбору механизма, имеющие практическое значение:
1. Если определяющим фактором выбора механизма является габарит, то следует выбрать схему вал-ролик (US).
2. Ели габарит механизма не играет решающую роль, а определяющим фактором выбора механизма является возможно большее осевое усилие, которое может передать механизм, то следует выбрать схему вал-кольца (BRD).
Рассмотрим выбор геометрического параметра из условий:
а) максимальной нагрузочной способности;
б) выполнения заданного закона перемещения. [ ]
а) Выбор геометрического параметра из условия максимальной нагрузочной способности.
На основании формулы (14) определим величину как:
для r = 1
Обозначим , тогда
На рис. 14 строим график , затем график , где , М1- масштаб .
И по этим двум графикам строим зависимость
Радиус вала r берем в интервале см.
Получаем область выбора геометрического параметра в зависимости от r и А = R/r.
в) Выбор геометрического параметра из условия выполнения заданного закона перемещения.
Диапазон работы ВКМ определяется величиной аналога скорости механизма, равного [ ]
Если задан радиус вала r, то для того, чтобы кольца ВКМ могли повернуться на угол, равный
(26)
необходимо определенное соотношение R, r и r1. Для различных значений R, r и r1 существует определенное значение угла поворота кольца B’, определяемое величинами А = R/r, , до которого касание кольца и вала происходит в точке. Дальнейшее увеличение угла В ведет к тому, что контакт между телами происходит в двух точках. При этом существует некоторое предельное значение угла Впред, которое будет максимальным для данных R, r и r1.
Начиная с B’ дальнейшее увеличение угла В требует резкого увеличения момента МД, затрачиваемого на преодоление момента от сил трения кольца о вал и действия силы Р.
Угол недопустим при работе механизма раскладки.
Значение угла B’ может быть найдено по формуле (27):
(27)
Необходимый угол разворота колец для сомкнутой намотки:
(28)
где ,
ib-k – передаточное отношение от вала раскладчика к катушке;
d – диаметр кабеля;
r – радиус вала раскладчика.
Передаточное отношение от вала раскладчика к катушке для изолировочной машины фирмы «Круп» на 32 бумажных ленты:
, тогда
Теперь строим на осях и на рис. 15 зависимость Ф. Угол наклона прямой к оси найдем следующим образом:
(29)
где - масштаб ;
- масштаб tgB’.
На рис. 15 строим также графики ,
Задаваясь значением d – диаметра кабеля ( в нашем случае d = 5 см) мы можем построить график зависимости .
На основании графиков с рис. 14 и рис. 15 строим совмещенный график на рис. 16.
Получили семейство кривых . Точка пересечения кривых с одним и тем же значением «a» дает нам минимальное значение r для выполнения обоих условий:
а) максимальной нагрузочной способности;
б) выполнения заданного закона перемещения
при конкретном диаметре кабеля d = 5 см. А заштрихованная область есть зона выбора возможных значений r и b.
Аналогично можно провести выбор и для других значений d – диаметра кабеля.
Задаваясь максимальным диаметром кабеля dMAX, который будет изготавливаться на машине, можно получить минимальное и макисмальное значения для выполнения обоих условий. Выбирать конкретное значение b из предполагаемого диапазона следует из максимальных значений, т.к. выполнение заданного закона будет обеспечено, а нагрузочная способность будет иметь коэффициент запаса сцепления на случай возможных перегрузок и механизм будет гарантирован от пробуксовок.
Таким образом, получено совместное решение двух поставленных задач о выборе относительной величины b, что имеет не только теоретическое, но и практическое значение.
Деталь – шарикоподшипник № 111 изготовляется из стали ШХ 15 и используется в механизме раскладки.
Механизм раскладки предназначен для равномерной рядовой укладки кабеля или его элементов вдоль приемного барабана.
В последнее время для раскладки используют валикокольцевые механизмы. Ведущая каретка валикокольцевого механизма может иметь вертикальное или горизонтальное расположение, внутри ее проходит гладкий вал. На этом валу и находится разрабатываемая деталь – шарикоподшипник № 111 со специально обработанным внутренним кольцом. Подшипник в процессе работы прижимается к гладкому валу с усилием Р и может поворачиваться на некоторый угол b.
Деталь изготовлена из дорогой, дефицитной стали ШХ 15, твердость которой HRC 61…65. Сталь ШХ 15 – материал труднообрабатываемый.
Для обработки используют следующие инструменты: резцы с пластинками из керамики на основе нитрида кремния с покрытием.
Деталь имеет сложную геометрическую форму (наличие фасонной поверхности, в дальнейшем «оливаж»). Деталь может быть обработана при использовании одного специального приспособления. В целом конструкция детали технологична. Базирование детали производим по наружному кольцу и по торцу. Основное значение для служебного назначения детали имеет поверхность оливажа.
Исходные данные:
Годовая программа изделий N = 11 000 шт.
Режим работы предприятия – 2 смены
Действительный годовой фонд времени работы оборудования Fд=4029 ч. [ ]
Такт выпуска деталей:
мин./шт (30)
Коэффициент серийности:
(31)
(32)
Длительность операций определяем на основе прикидочных расчетов [ ]
Токарная:
То=2*0,18*593,9*6,5*10-3 = 0,14 мин.
Тш-к=2,14*0,14 = 0,3 мин.
Шлифовальная:
То=1,8*57*6*10-3 = 0,615 мин.
Тш-к=2,1*0,615=1,293 мин.
Выглаживающая:
То=0,18*57*5,9*10-3 = 0,061 мин.
Тш-к=2,14*0,061 = 0,131 мин.
=0,575 мин.
По формуле (31):
Производство – мелкосерийное.
Количество деталей в партии:
шт. (33)
где а – периодичность запуска-выпуска изделий
Скорректируем количество деталей в партии:
= 1 смена
шт.
Принимаем n = 662 шт.
Маршрут обработки:
Выбор баз: наружная поверхность и торец.
Операция 005. Токарная. За один установ обрабатывается конус под углом 200 с одной стороны. За второй установ обрабатывается конус под углом 200 с другой стороны. Для того, чтобы обработка проходила за 1 проход применяем широкие резцы.
Операция 010. Шлифовальная. Сфера обрабатывается фасонным шлифовальным кругом методом врезания на внутришлифовальном станке. Использование фасонного круга позволяет получить требуемую точность обработки и шероховатость.
Операция 015. Выглаживающая. Выглаживание уменьшает шероховатость поверхности, точность остается прежней. Используем приспособление для внутреннего выглаживания.
Операция 020. Слесарная. Обрабатываем острые кромки, получившиеся на токарной операции.
Операция 025. Промывочная. Деталь моем в моечном растворе в моечной машине конвейерного типа.
Операция 030. Контрольная. Используется специальное контрольное приспособление.
Рассмотрим у какого варианта сумма текущих и приведенных затрат на единицу продукции будет меньше.
(34)
1) Токарная операция:
Ст.ф. =– рабочий V разряда
Сз. = руб./час
=
2) Шлифовальная
3) Выглаживающая
Технологическая себестоимость обработки:
Поэтому разрабатываемый техпроцесс экономически более выгоден.
Экономический эффект на программу выпуска:
Заданные геометрические и физические параметры качества поверхности детали могут обеспечиваться с помощью разных методов упрочняюще – отделочной и упрочняющей обработки:
§ механические (алмазное выглаживание, обкатывание, шариками или роликами, дробеструйная обработка, виброгалтовка и др.),
§ термические (закалка ТВЧ, газопламенная закалка и др.),
§ термохимические (цементация, азотирование и др.),
§ электрохимические (хромирование, борирование и др.).
Страницы: 1, 2, 3, 4, 5, 6, 7, 8
Новости |
Мои настройки |
|
© 2009 Все права защищены.